Diamonds pinpoint start of colliding continents

Jul 21, 2011
Optical photomicrograph of a sulfide-inclusion-bearing rough diamond from Botswana. Credit: Steven Shirey

Jewelers abhor diamond impurities, but they are a bonanza for scientists. Safely encased in the super-hard diamond, impurities are unaltered, ancient minerals that can tell the story of Earth's distant past. Researchers analyzed data from the literature of over 4,000 of these mineral inclusions to find that continents started the cycle of breaking apart, drifting, and colliding about 3 billion years ago. The research, published in the July 22, 2011, issue of Science, pinpoints when this so-called Wilson cycle began.

Lead author Steven Shirey at the Carnegie Institution's Department of explained: "The Wilson cycle is responsible for the growth of the Earth's , the continental structures we see today, the opening and closing of through time, mountain building, and the distribution of ores and other materials in the crust. But when it all began has remained elusive until now. We used the impurities, or inclusions, contained in , because they are perfect time capsules from great depth beneath the continents. They provide age and for a span of more than 3.5 billion years that includes the evolution of the atmosphere, the growth of the continental crust, and the beginning of plate tectonics."

Coauthor and longtime colleague Stephen Richardson of the University of Cape Town added: "It is astonishing that we can use the smallest mineral grains that can be analyzed to reveal the origin of some of Earth's largest ."

The largest diamonds come from cratons, the most ancient formations within continental interiors that have deep mantle roots or keels around which younger continental material gathered. Cratons contain the oldest rocks on the planet, and their keels extend into the mantle more than 125 miles (200 km) where pressures are sufficiently high, but temperatures sufficiently low, for diamonds to form and be stored for billions of years. The diamonds arrived at the surface as accidental passengers during volcanic eruptions of deep magma that solidified into rocks called kimberlites. The inclusions in diamonds come in two major varieties: peridotitic and eclogitic. Peridotite is the most abundant rock type in the upper mantle, whereas eclogite is generally thought to be the remnant of oceanic crust recycled into the mantle by the subduction or sinking of tectonic plates.

Shirey and Richardson, using their own work with other coinvestigators published in more than 20 papers over a 25-year period, reviewed the data from more than 4,000 inclusions of silicate—the Earth's most abundant material—and more than 100 inclusions of sulfide from five ancient continents. The most crucial aspects were to look at when the inclusions were encapsulated and the associated compositional trends. Compositions vary and depend on the geochemical processing that precursor components underwent before they were encapsulated.

Below this diamond's surface is a hexagonal grain of iron sulfide surrounded by a black rim. Credit: Jeffrey Harris, University of Glasgow

Two systems used to date inclusions—the rhenium-osmium and samarium-neodymium techniques—were compared. Both rely on natural isotopes that decay at exceedingly slow but predictable rates— around one disintegration every ten years on the scale of an inclusion—making them excellent atomic clocks for determining absolute ages.

The researchers found that before 3.2 billion years ago, only diamonds with peridotitic compositions formed—whereas subsequent to 3 billion years ago, eclogitic diamonds dominated. "The simplest explanation is that this change came from the initial subduction of one tectonic plate under the deep mantle keel of another as continents began to collide on a scale similar to that of the supercontinent cycle today. The sequence of underthrusting and collision led to the capture of eclogite in the subcontinental mantle keel along with the fluids that are needed to make diamonds." remarked Shirey. "This transition marks the onset of the Wilson cycle of ," concluded Richardson.

Explore further: NASA sees Hurricane Edouard far from US, but creating rough surf

Provided by Carnegie Institution

4.6 /5 (5 votes)

Related Stories

Clues included in diamonds

Oct 07, 2010

A study of Brazilian diamonds by Earth scientists from the University of Bristol has found that tiny inclusions in the diamonds contain traces of oceanic crust and sedimentary rocks, formed originally on the ...

Scientists' work improves odds of finding diamonds

Jul 14, 2010

While prospectors and geologists have been successful in finding diamonds through diligent searching, one University of Houston professor and his team's work could help improve the odds by focusing future searches in particular ...

Arctic rocks offer new glimpse of primitive Earth

Aug 11, 2010

Scientists have discovered a new window into the Earth's violent past. Geochemical evidence from volcanic rocks collected on Baffin Island in the Canadian Arctic suggests that beneath it lies a region of the Earth's mantle ...

Recommended for you

NASA sees Odile soaking Mexico and southwestern US

8 hours ago

Tropical Storm Odile continues to spread moisture and generate strong thunderstorms with heavy rainfall over northern Mexico's mainland and the Baja California as well as the southwestern U.S. NASA's Tropical ...

NASA sees Tropical Storm Polo intensifying

9 hours ago

Tropical storm warnings now issued for a portion of the Southwestern coast of Mexico as Polo continues to strengthen. Infrared imagery from NASA's Aqua satellite showed powerful thunderstorms around the center ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Cin5456
not rated yet Jul 22, 2011
This is fabulous news for geology. Continental cores first formed when the earth was 1.3 billion years old. I suppose they could have formed earlier, but evidence wasn't preserved. I would like to know what diamond mines these came from. I wonder what they found at the Ekati diamond mines in Canada.