New contrast agents detect bacterial infections with high sensitivity and specificity

Jul 18, 2011
Schematic showing the chemical design of maltodextrin-based imaging probes, which have been used to detect bacterial infections in animals with high sensitivity and specificity. The probes are composed of maltohexaose conjugated to a fluorescent dye. They are internalized at a high rate by bacteria through the maltodextrin transport pathway as a glucose source. Credit: Georgia Tech/Niren Murthy

A new family of contrast agents that sneak into bacteria disguised as glucose food can detect bacterial infections in animals with high sensitivity and specificity. These agents -- called maltodextrin-based imaging probes -- can also distinguish a bacterial infection from other inflammatory conditions.

"These fill the need for probes that can accurately image small numbers of bacteria in vivo and distinguish infections from other pathologies like cancer," said Niren Murthy, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "These probes could ultimately improve the diagnosis and treatment of bacterial infections, which remains a major challenge in medicine."

The imaging probes were described in the July 17, 2011 advance online edition of the journal .

Coulter Department postdoctoral fellows Xinghai Ning and Seungjun Lee led the project. University of Georgia Research Center postdoctoral associate Zhirui Wang; and Department of Biology associate professor Eric Gilbert and student Bryan Subblefield also contributed to the work.

In the United States in 2010, bacterial infections caused 40,000 deaths from sepsis and were the leading cause of . A major limitation preventing the effective treatment of bacterial infections is an inability to detect them inside the body with accuracy and sensitivity. To image bacterial infections, probes must first deliver a large quantity of the contrast agent into bacteria.

"Most existing imaging probes target the and cannot access the inside of the bacteria, but maltodextrin-based imaging probes target a bacterial ingestion pathway, which allows the contrast agent to reach a high concentration within bacteria," said Murthy.

Maltodextrin-based imaging probes consist of a fluorescent dye linked to maltohexaose, which is a major source of glucose for bacteria. The probes deliver the contrast agent into bacteria through the organism's maltodextrin transporter, which only exists in bacterial cells and not mammalian cells.

"To our knowledge, this represents the first demonstration of a targeting strategy that can deliver millimolar concentrations of an imaging probe within bacteria," noted Murthy.

In experiments using a rat model, the researchers found that the contrast agent accumulated in bacteria-infected tissues, but was efficiently cleared from uninfected tissues. They saw a 42-fold increase in fluorescence intensity between bacterial infected and uninfected tissues. However, the contrast agent did not accumulate in the healthy bacterial microflora located in the intestines. Because systemically administered glucose molecules cannot access the interior of the intestines, the bacteria located there never came into contact with the probe.

They also found that the probes could detect as few as one million viable bacteria cells. Current contrast agents for imaging bacteria require at least 100 million bacteria, according to the researchers.

In another experiment, the researchers found that the maltodextrin-based probes could distinguish between bacterial infections and inflammation with high specificity. Tissues infected with E. coli bacteria exhibited a 17-fold increase in fluorescence intensity when compared with inflamed tissues that were not infected.

Additional laboratory experiments showed that the probes could deliver large quantities of imaging probes to gram-positive and gram-negative bacteria for internalization. Both types of bacteria internalized the maltodextrin-based probes at a rate three orders of magnitude faster than mammalian cells.

"Maltodextrin-based probes show promise for imaging infections in a wide range of tissues, with an ability to detect bacteria in vivo with a sensitivity two orders of magnitude higher than previously reported," said Murthy.

Explore further: Researchers open possible avenue to better electrolyte for lithium ion batteries

Related Stories

Toward pinpointing the location of bacterial infections

Jan 02, 2007

In an advance in the emerging field of bacterial imaging, scientists are reporting development of a method for identifying specific sites of localized bacterial infections in living animals. Bradley D. Smith at the University ...

Nanotechnology used to probe effectiveness of antibiotics

Feb 04, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic ...

Gallium: A new antibacterial agent?

Mar 16, 2007

New antibacterial strategies are needed because more and more bacteria are antibiotic resistant and because antibiotics are not effective at eradicating chronic bacterial infections. One approach to developing new antibacterial ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.