Comprehensive overview of electronic transport in graphene published

Jul 14, 2011

Researchers from the University of Maryland and the CNST’s Shaffique Adam have recently published a detailed review of the electronic transport properties of two-dimensional graphene.

In the Reviews of Modern Physics article, the collaborators compare the properties of to other two-dimensional materials such as semiconductor heterostructures, quantum wells, and inversion layers.

They detail how, after adjusting for doped graphene's gapless, massless, chiral Dirac spectrum, the mechanisms for its electron motion, including its density and temperature-dependent carrier transport, are similar to these other, more conventional, materials.

Graphene, however, has unique transport regimes, including a robust metallic state at vanishing carrier density and unusual quantum motion that appears when it is configured in short ballistic devices.

The 64 page article, which has 38 figures and 473 references, provides a comprehensive review of recent experiments and theory, and has been well-received.

Although published in May 2011, a preprint of the article posted online in March 2010 has received over 60 citations, making it among the most cited graphene papers of the year.

Explore further: Nanostructure enlightening dendrite-free metal anode

More information: Electronic transport in two-dimensional graphene, S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Reviews of Modern Physics 83, 407 (2011). rmp.aps.org/abstract/RMP/v83/i2/p407_1

Abstract
A broad review of fundamental electronic properties of two-dimensional graphene with the emphasis on density and temperature-dependent carrier transport in doped or gated graphene structures is provided. A salient feature of this review is a critical comparison between carrier transport in graphene and in two-dimensional semiconductor systems (e.g., heterostructures, quantum wells, inversion layers) so that the unique features of graphene electronic properties arising from its gapless, massless, chiral Dirac spectrum are highlighted. Experiment and theory, as well as quantum and semiclassical transport, are discussed in a synergistic manner in order to provide a unified and comprehensive perspective. Although the emphasis of the review is on those aspects of graphene transport where reasonable consensus exists in the literature, open questions are discussed as well. Various physical mechanisms controlling transport are described in depth including long-range charged impurity scattering, screening, short-range defect scattering, phonon scattering, many-body effects, Klein tunneling, minimum conductivity at the Dirac point, electron-hole puddle formation, p-n junctions, localization, percolation, quantum-classical crossover, midgap states, quantum Hall effects, and other phenomena.

add to favorites email to friend print save as pdf

Related Stories

Highlight: Nanopatterning of Graphene

Mar 11, 2010

Center for Nanoscale Materials (CNM) at Argonne National Laboratory users from Politecnico di Milano in Italy, working collaboratively with researchers in the Electronic & Magnetic Materials & Devices Group, ...

Seeing Moire in Graphene

Apr 27, 2010

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology and the Georgia Institute of Technology have demonstrated that atomic scale moiré patterns, an interference pattern ...

Real-world graphene devices may have a bumpy ride

Jan 19, 2011

(PhysOrg.com) -- Electronics researchers love graphene. A two-dimensional sheet of carbon one atom thick, graphene is like a superhighway for electrons, which rocket through the material with 100 times the mobility they have ...

Doping graphene

Jun 01, 2010

An organic molecule that has been found to be effective in making silicon-based electronics may be viable for building electronics on sheets of carbon only a single molecule thick. Researchers at the Max Planck ...

Two graphene layers may be better than one

Apr 27, 2011

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology have shown that the electronic properties of two layers of graphene vary on the nanometer scale. The surprising new results ...

Recommended for you

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

User comments : 0