New compounds for molecule interferometry experiments

Jul 20, 2011

When waves meet, a new single wave is created. This phenomenon is well understood for mechanical waves such as sound, and electro-magnetic waves such as light, and the "interference" of light waves is applied in astronomy, fiber optics, and oceanography. The observation that even individual large organic molecules can delocalize over large distance and interfere—not with each other, but each one with itself—is rather new, and its study requires suitable substances.

A team of chemists led by Marcel Mayor at the Universität Basel has recently designed a new series of compounds that were successfully used for interferometry experiments by a group of experimental physicists headed by Markus Arndt at the Universität Wien, as they report in the European Journal of Organic Chemistry.

Chemical functionalization allows the properties of the molecules to be tailored to the needs of the experiments. To be compatible with interferometry, compounds must be highly volatile, stable, and easily ionized. In order to understand the transition between quantum and classical mechanics, it is important to study molecules of increasing mass. The first two criteria can be met by highly fluorinated compounds. To meet the requirements of a high molecular mass and good detectability, the authors judiciously paired the fluorinated moieties to a porphyrin core.

The team presented a modular synthesis of seven fluorinated porphyrins. The aim of the authors was to cover a specific mass range and to optimize the design of the structures towards high volatility; their resulting synthetic strategy is straightforward and easily applied. The fluorine components are coupled to the outer parts of the porphyrins in the last step of the synthesis. They can thus be easily modified to fine-tune the interferometry experiments. Despite the high fluorine content of the porphyrins, these compounds could still be produced by established organic synthesis protocols.

The researchers showed that at least one of their prepared met the criteria for thermal evaporation and stability, and the team plans to adopt the modular synthesis technique reported for the design of more specific, mass-limited, sublimable organic dyes for future molecule interferometry experiments.

Explore further: New technique reveals immune cell motion through variety of tissues

More information: Marcel Mayor et al., Highly Fluorous Porphyrins as Model Compounds for Molecule Interferometry, European Journal of Organic Chemistry, dx.doi.org/10.1002/ejoc.201100638

Provided by European Journal of Organic Chemistry

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Room Temperature Liquid Porphyrins

Mar 23, 2010

(PhysOrg.com) -- Porphyrins have received a great deal of attention in the scientific community owing to their useful application in a wide variety of areas, such as the treatment of cancer and systems that mimic photosynthesis. ...

From rare bugs to test tube drugs

Dec 23, 2008

(PhysOrg.com) -- Scientists at the University of St Andrews have created exotic biological compounds in a test tube by uncovering some of Nature's chemical secrets.

New use found for tunneling microscope

Apr 23, 2007

Dutch researchers have found a new use for scanning tunneling microscopes: visualizing individual catalysts at work at a solid-liquid interface.

Recommended for you

'Global positioning' for molecules

Dec 19, 2014

In everyday life, the global positioning system (GPS) can be employed to reliably determine the momentary location of one en route to the desired destination. Scientists from the Institute of Physical and ...

Cells build 'cupboards' to store metals

Dec 17, 2014

Lawrence Livermore researchers in conjunction with collaborators at University of California (link is external), Los Angeles have found that some cells build intracellular compartments that allow the cell ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.