Cellular stress can induce yeast to promote prion formation

July 23, 2011

It's a chicken and egg question. Where do the infectious protein particles called prions come from? Essentially clumps of misfolded proteins, prions cause neurodegenerative disorders, such as mad cow/Creutzfeld-Jakob disease, in humans and animals. Prions trigger the misfolding and aggregation of their properly folded protein counterparts, but they usually need some kind of "seed" to get started.

Biochemists at Emory University School of Medicine have identified a called Lsb2 that can promote spontaneous prion formation. This unstable, short-lived protein is strongly induced by cellular stresses such as heat. Lsb2's properties also illustrate how cells have developed ways to control and regulate prion formation. Research in yeast has shown that sometimes, prions can actually help cells adapt to different conditions.

The results are published in the July 22 issue of the journal Molecular Cell. The senior author is Keith Wilkinson, PhD, professor of biochemistry at Emory University School of Medicine The first author is senior associate Tatiana Chernova, PhD.

The aggregated form of proteins connected with several other such as Alzheimer's, Parkinson's and Huntington's can, in some circumstances, act like prions. So the Emory team's finding provides insight into how the ways that cells deal with stress might lead to poisonous protein aggregation in human diseases.

"A direct human homolog of Lsb2 doesn't exist, but there may be a protein that performs the same function," Wilkinson says. "The mechanism may say more about other types of than about classical prions in humans, This mechanism of seeding and growth may be more important for aggregate formation in diseases such as Huntington's."

Lsb2 does not appear to form stable prions by itself. Rather, it seems to bind to and encourage the aggregation of another , Sup35, which does form prions.

"Our model is that stress induces high levels of Lsb2, which allows the accumulation of misfolded prion proteins," Wilkinson says. "Lsb2 protects enough of these newborn particles from the quality control machinery for a few of them to get out."

Explore further: Prion propagates in foreign host

More information: T.A. Chernova et al. Prion Induction by the Short-lived Stress Induced Protein Lsb2 Is Regulated by Ubiquitination and Association with the Actin Cytoskeleton Mol. Cell (2011).

Related Stories

Prion propagates in foreign host

July 5, 2007

Prions -- infectious, oddly-folded proteins that are the main suspects in fatal neurodegenerative diseases such as Cruetzfeldt-Jakob and bovine spongiform encephalopathy, or "mad cow" -- remain mostly a mystery to scientists. ...

Prions link cholesterol to neurodegeneration

February 12, 2008

Prion infection of neurons increases the free cholesterol content in cell membranes. A new study published in the online open access journal BMC Biology suggests that disturbances in membrane cholesterol may be the mechanism ...

Prions show their good side

May 7, 2008

Prions, the infamous agents behind mad cow disease and its human variation, Creutzfeldt-Jakob Disease, also have a helpful side. According to new findings from Gerald Zamponi and colleagues, normally functioning prions prevent ...

Prion discovery gives clue to control of mass gene expression

March 13, 2009

The discovery in common brewer's yeast of a new, infectious, misfolded protein -- or prion -- by University of Illinois at Chicago molecular biologists raises new questions about the roles played by these curious molecules, ...

Recommended for you

A novel toxin for M. tuberculosis

August 4, 2015

Despite 132 years of study, no toxin had ever been found for the deadly pathogen Mycobacterium tuberculosis, which infects 9 million people a year and kills more than 1 million.

New biosensors for managing microbial 'workers'

August 4, 2015

Super productive factories of the future could employ fleets of genetically engineered bacterial cells, such as common E. coli, to produce valuable chemical commodities in an environmentally friendly way. By leveraging their ...

Fish that have their own fish finders

August 4, 2015

The more than 200 species in the family Mormyridae communicate with one another in a way completely alien to our species: by means of electric discharges generated by an organ in their tails.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.