Cellular stress can induce yeast to promote prion formation

Jul 23, 2011

It's a chicken and egg question. Where do the infectious protein particles called prions come from? Essentially clumps of misfolded proteins, prions cause neurodegenerative disorders, such as mad cow/Creutzfeld-Jakob disease, in humans and animals. Prions trigger the misfolding and aggregation of their properly folded protein counterparts, but they usually need some kind of "seed" to get started.

Biochemists at Emory University School of Medicine have identified a called Lsb2 that can promote spontaneous prion formation. This unstable, short-lived protein is strongly induced by cellular stresses such as heat. Lsb2's properties also illustrate how cells have developed ways to control and regulate prion formation. Research in yeast has shown that sometimes, prions can actually help cells adapt to different conditions.

The results are published in the July 22 issue of the journal Molecular Cell. The senior author is Keith Wilkinson, PhD, professor of biochemistry at Emory University School of Medicine The first author is senior associate Tatiana Chernova, PhD.

The aggregated form of proteins connected with several other such as Alzheimer's, Parkinson's and Huntington's can, in some circumstances, act like prions. So the Emory team's finding provides insight into how the ways that cells deal with stress might lead to poisonous protein aggregation in human diseases.

"A direct human homolog of Lsb2 doesn't exist, but there may be a protein that performs the same function," Wilkinson says. "The mechanism may say more about other types of than about classical prions in humans, This mechanism of seeding and growth may be more important for aggregate formation in diseases such as Huntington's."

Lsb2 does not appear to form stable prions by itself. Rather, it seems to bind to and encourage the aggregation of another , Sup35, which does form prions.

"Our model is that stress induces high levels of Lsb2, which allows the accumulation of misfolded prion proteins," Wilkinson says. "Lsb2 protects enough of these newborn particles from the quality control machinery for a few of them to get out."

Explore further: Brand new technology detects probiotic organisms in food

More information: T.A. Chernova et al. Prion Induction by the Short-lived Stress Induced Protein Lsb2 Is Regulated by Ubiquitination and Association with the Actin Cytoskeleton Mol. Cell (2011).

Related Stories

Prions show their good side

May 07, 2008

Prions, the infamous agents behind mad cow disease and its human variation, Creutzfeldt-Jakob Disease, also have a helpful side. According to new findings from Gerald Zamponi and colleagues, normally functioning prions prevent ...

Study finds two gene classes linked to new prion formation

May 26, 2011

Unlocking the mechanisms that cause neurodegenerative prion diseases may require a genetic key, suggest new findings reported by University of Illinois at Chicago distinguished professor of biological sciences Susan Liebman.

Prion propagates in foreign host

Jul 05, 2007

Prions -- infectious, oddly-folded proteins that are the main suspects in fatal neurodegenerative diseases such as Cruetzfeldt-Jakob and bovine spongiform encephalopathy, or "mad cow" -- remain mostly a mystery to scientists. ...

Prions link cholesterol to neurodegeneration

Feb 12, 2008

Prion infection of neurons increases the free cholesterol content in cell membranes. A new study published in the online open access journal BMC Biology suggests that disturbances in membrane cholesterol may be the mechan ...

Recommended for you

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0