Biofilters reduce carbon footprint of old landfill sites

Jul 11, 2011

Researchers in the US are testing biofilter systems as a viable alternative to releasing methane from passive landfill vents into the atmosphere. The technology could reduce the overall impact of old landfills on global warming. Details are reported in the current issue of the International Journal of Environmental Engineering.

Organic matter rotting in smaller, old landfill sites generates a slow trickle of the , , into the atmosphere, amounting to just 2 or 3 kilograms per day per vent. In contrast to controlled methane generate for biofuel from modern, managed landfills, tapping this slow stream of the gas is not viable technologically or economically. However, methane has an infrared activity 21 times greater than carbon dioxide and so represents an important anthropogenic source of this greenhouse gas when attempting to balance the climate change books. Indeed, landfills contribute 12% of worldwide anthropogenic due to the decomposition of organic waste.

Old landfills typically have passive gas vents. Methane is simply released into the atmosphere from these vents, or if the rate of emission is high enough it can be burned, or flared. According to Tarek Abichou and Jeffery Chanton of the Florida State University, Jose Morales of Environmental and Geotechnical Specialists, Inc., Tallahassee, Florida and Lei Yuan of Geosyntec Consultants in Columbia, Maryland, methane oxidation has recently been viewed as a more benign alternative to venting or flaring of landfill methane.

The researchers tested two biofilter designs capable of oxidizing to carbon dioxide and water. Both are packed with so-called methanotrophic bacteria, microbes that digest methane. They found that the radial biofilter design gave a much higher methane oxidation rate than a vertical biofilter. The higher surface area exposed to methane flow led to greater oxygen penetration into the biofilters, essential for microbial digestion. The radial biofilter has a surface area of well over 1.2 square meters whereas the vertical biofilter amounts to just 0.3 square meters area.

The team also found that the average percent oxidation rate of 20% and higher for the radial was possible when the air temperature was 20 to 36 Celsius, indicating the optimal soil temperature for methanotrophic bacteria to oxidize methane. Vertical biofilters averaged a little over 12% oxidation.

Explore further: Australia out of step with new climate momentum

More information: "Mitigating methane emissions from passive landfill vents: a viable option for older closed landfills" in Int. J. Environmental Engineering, 2011, 3, 284-297

add to favorites email to friend print save as pdf

Related Stories

Landfill cover soil methane oxidation underestimated

Apr 27, 2009

Landfilled waste decomposes in the absence of oxygen and results in the production of methane. Landfills are classified as the second-largest human-made source of CH4 in the U.S. Additionally, landfill gas contains numerous ...

Methane from microbes: a fuel for the future

Dec 10, 2007

Microbes could provide a clean, renewable energy source and use up carbon dioxide in the process, suggested Dr James Chong at a Science Media Centre press briefing today.

Estimating landfill gas potential

May 26, 2011

Research suggests that landfill gas-recovery projects should be implemented quickly if the maximum amount of methane gas is to be retrieved from organic waste in as short as time as possible, according to a study published ...

Recommended for you

Australia out of step with new climate momentum

1 hour ago

Australian Prime Minister Tony Abbott, who rose to power in large part by opposing a tax on greenhouse gas emissions, is finding his country isolated like never before on climate change as the U.S., China ...

Education is key to climate adaptation

16 hours ago

Given that some climate change is already unavoidable—as just confirmed by the new IPCC report—investing in empowerment through universal education should be an essential element in climate change adaptation ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.