Big step forward for SKA radio telescope

July 7, 2011

The discovery potential of the future international SKA radio telescope has been glimpsed following the commissioning of a working optical fibre link between CSIRO's Australian SKA Pathfinder (ASKAP) telescope in Western Australia, and other radio telescopes across Australia and New Zealand.

The achievement will be announced at the 2011 International SKA Forum, taking place this week in Banff, Canada.

On 29 June, six telescopes – ASKAP, three CSIRO telescopes in New South Wales, a University of Tasmania telescope and another operated by the Auckland University of Technology – were used together to observe a radio source that may be two black holes orbiting each other.

Data from all sites were streamed in real time to Curtin University in Perth (a node of the International Centre for Radio Astronomy Research) and there processed to make an image.

This ability to successfully link antennas (dishes) over large distances will be vital for the future $2.5 billion SKA telescope, which will have several thousand antennas, up to 5500 km apart, working together as a single telescope. Linking antennas in such a manner allows astronomers to see distant galaxies in more detail.

"We now have an SKA-scale network in Australia and New Zealand: a combination of CSIRO and NBN-supported fibre and the existing AARNET and KAREN research and education networks," said SKA Director for Australasia Dr Brian Boyle.

The radio source the astronomers targeted was PKS 0637-752, a quasar that lies more than seven and a half billion light-years away from us.

This quasar emits a spectacular radio jet with regularly spaced bright spots in it, like a string of pearls. Some astronomers have suggested that this striking pattern is created by two black holes in orbit around each other, one black hole periodically triggering the other to "feed" and emit a burst of radiation.

"It's a fascinating object, and we were able to zoom right into its core, seeing details just a few millionths of a degree in scale, equivalent to looking at a 10-cent piece from a distance of 1000 km," said CSIRO astronomer Dr Tasso Tzioumis.

During the experiment Dr Tzioumis and fellow CSIRO astronomer Dr Chris Phillips controlled all the telescopes over the internet from Sydney.

Curtin University's Professor Steven Tingay and his research team built the system used to process the data. "Handling the terabytes of data that will stream from ASKAP is within reach, and we are on the path to the SKA," he said.

"For an SKA built in Australia and New Zealand, this technology will help connect the SKA to major in China, Japan, India and Korea."

AARNet, which provides the data network for Australia's research institutions, has recently shown that it can implement data rates of up to 40 Gbps on existing fibre networks. That figure is for a single wavelength, and one fibre can support up to 80 wavelengths.

Explore further: Australia, South Africa, short-listed for giant telescope

Related Stories

Astronomers reveal a 'blue whale of space'

July 7, 2009

CSIRO astronomers have revealed the hidden face of an enormous galaxy called Centaurus A, which emits a radio glow covering an area 200 times bigger than the full Moon.

First signal received by future telescope

March 3, 2010

An historic milestone was reached recently in Australia's bid to host the Square Kilometre Array telescope - a future international radio telescope that will be the world's largest and most sensitive.

Aussies and Kiwis forge a cosmic connection

May 26, 2010

Six radio telescopes across Australia and New Zealand have joined forces to act as one giant telescope, linking up over a distance of 5500 km for the first time.

CSIRO 'hot rods' old telescope

October 13, 2010

CSIRO has helped transform the University of Sydney's radio telescope into a world-class instrument, and along the way has learned lessons for its own ASKAP (Australian SKA Pathfinder) telescope.

Recommended for you

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (3) Jul 08, 2011
The radio source the astronomers targeted was PKS 0637-752, a quasar that lies more than seven and a half billion light-years away from us.

This quasar emits a spectacular radio jet with regularly spaced bright spots in it, like a string of pearls.

"It's a fascinating object, and we were able to zoom right into its core, seeing details just a few millionths of a degree in scale, equivalent to looking at a 10-cent piece from a distance of 1000 km"


Congratulations!

You are headed toward discovering neutron repulsion - the nuclear force that causes nuclei of atoms, stars and galaxies to explode violently on occasion and to emit continuous streams of energy at other times.

Neutron repulsion is recorded as rest mass in all nuclei containing two or more neutrons.

"Neutron Repulsion" [The APEIRON Journal, in press, 19 pages (2011)]

http://arxiv.org/...2.1499v1

With kind regards,
Oliver K. Manuel
Former NASA PI
for Apollo Samples

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.