Astronomers start testing infrared camera at world's largest telescope

Jul 15, 2011

University of Florida astronomers are testing a new infrared camera this summer at the world’s largest telescope that will allow researchers to look for planets outside our own solar system and better explore hidden black holes at the centers of galaxies.

The commissioning of CanariCam, a high-tech, heat-sensitive camera, started in late June at the site of the biggest optical-infrared in the world. Gran Telescopio Canarias, or Grantecan, is located at 7,438 foot-altitude on the island of La Palma, in Spain’s Canary Islands off the northwest coast of Africa.

CanariCam, created by a team of astronomers and engineers led by UF astronomy professor Charles Telesco, had a cost of $3.2 million, financed by the Spanish government, and will allow researchers to peer through obscuring interstellar dust with unprecedented accuracy.

The process of installing an instrument on a telescope and verifying the full functionality of all its operational modes isn’t an easy task.

“Any frontline research instrument is one of a kind. In order to be at the forefront of science, you can’t do what others have done already. You must incorporate the newest materials and technologies and push them further than anybody has done before,” Telesco said.

Despite the challenges, more than 50 percent of the capabilities of CanariCam have been fully tested on the telescope and should be finished next month. It will then be ready for use by the general scientific community starting in March 2012.

Internationally known for its expertise in designing, building and using state-of-the-art astronomical instrumentation on some of the world’s largest telescopes, the University of Florida is a 5 percent partner in the Grantecan telescope, also known as the GTC, which was inaugurated in 2009. UF is developing and using instruments such as CanariCam to maximize the telescope’s scientific productivity for all its users. In return, the Florida team has access to the telescope for its own projects.

“Currently there are only three infrared instruments installed on 8-to-10 meter class telescopes in the world. The unique specifications of CanariCam, combined with the mighty 10.4 meter (34.12 feet) mirror of the GTC, will be a cutting-edge scientific tool,” Telesco said.

Some bodies or regions of the universe do not emit visible light but infrared radiation, which is detected by CanariCam. This capability will spearhead research exploring planets outside our solar system and regions where planets and stars are forming. Also, the fact that infrared radiation can pierce easily cosmic dust clouds means that CanariCam would be able to see objects that are totally obscured at visible wavelengths.

Explore further: Dusty substructure in a galaxy far far away

Related Stories

Unusual asteroid suspected of spinning to explosion

Mar 20, 2015

A team led by astronomers from the Jagiellonian University in Krakow, Poland, recently used the W. M. Keck Observatory in Hawaii to observe and measure a rare class of "active asteroids" that spontaneously ...

Milky Way's center unveils supernova 'dust factory'

Mar 19, 2015

Sifting through the center of the Milky Way galaxy, astronomers have made the first direct observations - using an infrared telescope aboard a modified Boeing 747 - of cosmic building-block dust resulting ...

Intergalactic GPS will guide you through the stars

Mar 10, 2015

Lost in the Universe? Need some precise navigation through the bulk of stars in the night sky? Don't worry, there will be an instrument for that - the Multi-Object Optical and Near-infrared Spectrograph (MOONS) ...

Google gives Lick Observatory $1 million

Feb 10, 2015

Google Inc. has given $1 million to the University of California's Lick Observatory in what astronomers hope is the first of many private gifts to support an invaluable teaching and research resource for ...

Recommended for you

Dusty substructure in a galaxy far far away

10 hours ago

Scientists at the Max Planck Institute for Astrophysics (MPA) have combined high-resolution images from the ALMA telescopes with a new scheme for undoing the distorting effects of a powerful gravitational ...

ALMA disentangles complex birth of giant stars

10 hours ago

A research group led by Aya Higuchi, a researcher at Ibaraki University, conducted observations of the massive-star forming region IRAS 16547-4247 with the Atacama Large Millimeter/submillimeter Array (ALMA). ...

Image: The tumultuous heart of the Large Magellanic Cloud

Mar 31, 2015

A scene of jagged fiery peaks, turbulent magma-like clouds and fiercely hot bursts of bright light. Although this may be reminiscent of a raging fire or the heart of a volcano, it actually shows a cold cosmic ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (3) Jul 15, 2011
Congratulations!

As you begin the search for planets outside our own Solar System, please keep in mind the fact - seldom mentioned in the hallowed halls of Consensus Science - that the first planets found outside our own Solar System were rocky, Earth-like planets orbiting a pulsar [Nature 355 (1992) 145-147; Science 264, (1994) 538-542].

For decades mainstream astrophysicists and astronomers tried to ignore that embarrassing discovery because it confirmed the very mechanism suggested in the 1970s and ridiculed by mainstream scientists for the origin of the Earth and the Solar System [Nature 240 (1972) 99-101; Trans. Missouri Acad. Sci. 9 (1975) 104- 122; Nature 262 (1976) 28-32; Science 195 (1977) 208-209; Nature 277 (1979) 615-620].

Best wishes for a successful search!
Oliver K. Manuel
Former NASA Principal
Investigator for Apollo

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.