Astronomers start testing infrared camera at world's largest telescope

Jul 15, 2011

University of Florida astronomers are testing a new infrared camera this summer at the world’s largest telescope that will allow researchers to look for planets outside our own solar system and better explore hidden black holes at the centers of galaxies.

The commissioning of CanariCam, a high-tech, heat-sensitive camera, started in late June at the site of the biggest optical-infrared in the world. Gran Telescopio Canarias, or Grantecan, is located at 7,438 foot-altitude on the island of La Palma, in Spain’s Canary Islands off the northwest coast of Africa.

CanariCam, created by a team of astronomers and engineers led by UF astronomy professor Charles Telesco, had a cost of $3.2 million, financed by the Spanish government, and will allow researchers to peer through obscuring interstellar dust with unprecedented accuracy.

The process of installing an instrument on a telescope and verifying the full functionality of all its operational modes isn’t an easy task.

“Any frontline research instrument is one of a kind. In order to be at the forefront of science, you can’t do what others have done already. You must incorporate the newest materials and technologies and push them further than anybody has done before,” Telesco said.

Despite the challenges, more than 50 percent of the capabilities of CanariCam have been fully tested on the telescope and should be finished next month. It will then be ready for use by the general scientific community starting in March 2012.

Internationally known for its expertise in designing, building and using state-of-the-art astronomical instrumentation on some of the world’s largest telescopes, the University of Florida is a 5 percent partner in the Grantecan telescope, also known as the GTC, which was inaugurated in 2009. UF is developing and using instruments such as CanariCam to maximize the telescope’s scientific productivity for all its users. In return, the Florida team has access to the telescope for its own projects.

“Currently there are only three infrared instruments installed on 8-to-10 meter class telescopes in the world. The unique specifications of CanariCam, combined with the mighty 10.4 meter (34.12 feet) mirror of the GTC, will be a cutting-edge scientific tool,” Telesco said.

Some bodies or regions of the universe do not emit visible light but infrared radiation, which is detected by CanariCam. This capability will spearhead research exploring planets outside our solar system and regions where planets and stars are forming. Also, the fact that infrared radiation can pierce easily cosmic dust clouds means that CanariCam would be able to see objects that are totally obscured at visible wavelengths.

Explore further: Two families of comets found around nearby star Beta Pictoris

add to favorites email to friend print save as pdf

Related Stories

NASA Webb's heart survives deep freeze test

1 hour ago

After 116 days of being subjected to extremely frigid temperatures like that in space, the heart of the James Webb Space Telescope, the Integrated Science Instrument Module (ISIM) and its sensitive instruments, ...

Recommended for you

New window on the early Universe

10 hours ago

Scientists at the Universities of Bonn and Cardiff see good times approaching for astrophysicists after hatching a new observational strategy to distill detailed information from galaxies at the edge of ...

Chandra's archives come to life

13 hours ago

Every year, NASA's Chandra X-ray Observatory looks at hundreds of objects throughout space to help expand our understanding of the Universe. Ultimately, these data are stored in the Chandra Data Archive, ...

New robotic telescope revolutionizes the study of stars

13 hours ago

In the last 8 months a fully robotic telescope in Tenerife has been carrying out high-precision observations of the motion of stellar surfaces. The telescope is the first in the SONG telescope network and ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (3) Jul 15, 2011
Congratulations!

As you begin the search for planets outside our own Solar System, please keep in mind the fact - seldom mentioned in the hallowed halls of Consensus Science - that the first planets found outside our own Solar System were rocky, Earth-like planets orbiting a pulsar [Nature 355 (1992) 145-147; Science 264, (1994) 538-542].

For decades mainstream astrophysicists and astronomers tried to ignore that embarrassing discovery because it confirmed the very mechanism suggested in the 1970s and ridiculed by mainstream scientists for the origin of the Earth and the Solar System [Nature 240 (1972) 99-101; Trans. Missouri Acad. Sci. 9 (1975) 104- 122; Nature 262 (1976) 28-32; Science 195 (1977) 208-209; Nature 277 (1979) 615-620].

Best wishes for a successful search!
Oliver K. Manuel
Former NASA Principal
Investigator for Apollo