New finding shows a research area to expand in EMSL Radiochemistry Annex

July 15, 2011
New research demonstrated the effect of goethite on reduction of Pu(IV) by measuring the time dependence of total aqueous Pu concentration, its oxidation state, and system pe/pH.

Scientists from Pacific Northwest National Laboratory and Rai Enviro-Chem, LLC, recently published first-ever results that illustrate the importance of determining hard-to-find oxidized Fe(III) reaction products in the reduction of Pu(IV) to Pu(III) by the reductant Fe(II). The shift from the insoluble Pu(IV)—the current state of plutonium contaminants within sediments at the Department of Energy’s Hanford Site—to the lower oxidation state Pu(III) is a very important reaction to study because Pu(III) is soluble, and therefore potentially more mobile in the groundwater.

However, this particular reduction reaction is far less studied than other contaminant-related reactions because of the radioactivity of the samples and the need for specialized facilities and equipment. The research team’s overall strategy was to move beyond bulk studies of Pu(IV) /Fe(II) interactions  to explore the microscopic and molecular processes involved in forming the tiny amounts of Fe(III) oxidization products that the reaction generates—a challenge that had never been attempted.

In this case, the team coupled solution-phase measurements of Pu concentrations and oxidation state determinations with SEM/TEM analysis of the reaction products, which demonstrated the enhancing role that Fe(III) reaction products play in the formation of Pu(III), and led to development of the first thermodynamic theory of such an effect. This outcome is a considerable step toward understanding the molecular mechanisms that govern the reduction from Pu(IV) to Pu(III), while also arming engineers with new information on how to inhibit the reaction in contaminated subsurface environments around the nation. Studies like these will be greatly enhanced by the addition of EMSL’s new Radiochemistry Annex, which is set to fully open to the global user community in Fall 2012. Until then, selected new radiological capabilities will become available to users beginning in August 2011.

Explore further: First Radioactive Experiments Performed at the INE-Beamline at ANKA

More information: Felmy AR, et al. 2011. "Heterogeneous Reduction of PuO2 with Fe(II): Importance of the Fe(III) Reaction Product." Environmental Science & Technology 45:3952-3958. DOI: 10.1021/es104212g

Related Stories

Scientists discover historic sample of bomb-grade plutonium

February 26, 2009

( -- Scientists in Washington state are reporting the surprise discovery of the oldest known sample of reactor-produced bomb-grade plutonium, a historic relic from the infancy of America’s nuclear weapons program. ...

New cancer target for non-Hodgkin's lymphoma

November 22, 2009

Physician-scientists from Weill Cornell Medical College have discovered a molecular mechanism that may prove to be a powerful target for the treatment of non-Hodgkin's lymphoma, a type of cancer that affects lymphocytes, ...

Researchers develop fast methods for making 3D city models

March 29, 2010

There is a growing demand for three-dimensional city models, but creating these models is expensive and labour-intensive. Shi Pu and Sander Oude Elberink of the University of Twente, The Netherlands, have each developed a ...

Recommended for you

The universe's most miraculous molecule

October 9, 2015

It's the second most abundant substance in the universe. It dissolves more materials than any other solvent. It stores incredible amounts of energy. Life as we know it would not be possible without it. And although it covers ...

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...

Trio wins Nobel Prize for mapping how cells fix DNA damage

October 7, 2015

Tomas Lindahl was eating his breakfast in England on Wednesday when the call came—ostensibly, from the Royal Swedish Academy of Sciences. It occurred to him that this might be a hoax, but then the caller started speaking ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.