New finding shows a research area to expand in EMSL Radiochemistry Annex

Jul 15, 2011
New research demonstrated the effect of goethite on reduction of Pu(IV) by measuring the time dependence of total aqueous Pu concentration, its oxidation state, and system pe/pH.

Scientists from Pacific Northwest National Laboratory and Rai Enviro-Chem, LLC, recently published first-ever results that illustrate the importance of determining hard-to-find oxidized Fe(III) reaction products in the reduction of Pu(IV) to Pu(III) by the reductant Fe(II). The shift from the insoluble Pu(IV)—the current state of plutonium contaminants within sediments at the Department of Energy’s Hanford Site—to the lower oxidation state Pu(III) is a very important reaction to study because Pu(III) is soluble, and therefore potentially more mobile in the groundwater.

However, this particular reduction reaction is far less studied than other contaminant-related reactions because of the radioactivity of the samples and the need for specialized facilities and equipment. The research team’s overall strategy was to move beyond bulk studies of Pu(IV) /Fe(II) interactions  to explore the microscopic and molecular processes involved in forming the tiny amounts of Fe(III) oxidization products that the reaction generates—a challenge that had never been attempted.

In this case, the team coupled solution-phase measurements of Pu concentrations and oxidation state determinations with SEM/TEM analysis of the reaction products, which demonstrated the enhancing role that Fe(III) reaction products play in the formation of Pu(III), and led to development of the first thermodynamic theory of such an effect. This outcome is a considerable step toward understanding the molecular mechanisms that govern the reduction from Pu(IV) to Pu(III), while also arming engineers with new information on how to inhibit the reaction in contaminated subsurface environments around the nation. Studies like these will be greatly enhanced by the addition of EMSL’s new Radiochemistry Annex, which is set to fully open to the global user community in Fall 2012. Until then, selected new radiological capabilities will become available to users beginning in August 2011.

Explore further: Researchers create engineered energy absorbing material

More information: Felmy AR, et al. 2011. "Heterogeneous Reduction of PuO2 with Fe(II): Importance of the Fe(III) Reaction Product." Environmental Science & Technology 45:3952-3958. DOI: 10.1021/es104212g

add to favorites email to friend print save as pdf

Related Stories

Scientists discover historic sample of bomb-grade plutonium

Feb 26, 2009

(PhysOrg.com) -- Scientists in Washington state are reporting the surprise discovery of the oldest known sample of reactor-produced bomb-grade plutonium, a historic relic from the infancy of America’s nuclear weapons program. ...

New cancer target for non-Hodgkin's lymphoma

Nov 22, 2009

Physician-scientists from Weill Cornell Medical College have discovered a molecular mechanism that may prove to be a powerful target for the treatment of non-Hodgkin's lymphoma, a type of cancer that affects lymphocytes, ...

Recommended for you

Water and sunlight the formula for sustainable fuel

3 hours ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Researchers create engineered energy absorbing material

4 hours ago

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

Solar fuels as generated by nature

5 hours ago

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

User comments : 0