First X-ray lasing of SACLA

June 17, 2011

RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI) have successfully produced a first beam of X-ray laser light with a wavelength of 1.2 Angstroms. This light was created using SACLA, a cutting-edge X-ray Free Electron Laser (XFEL) facility unveiled by RIKEN in February 2011 in Harima, Japan. SACLA (SPring-8 Angstrom Compact free electron LAser) opens a window into the structure of atoms and molecules at a level of detail never seen before.

The use of ultra high-intensity X-ray free electron laser light to explore the miniature structure of matter, until recently inconceivable, is today transforming how we visualize the atomic world. By providing much shorter wavelengths and higher intensities than other lasers, XFEL enables researchers to directly observe and manipulate objects on an unrivalled scale, opening new research opportunities in fields ranging from medicine and drug discovery to nanotechnology.

One of only two facilities in the world to offer this novel light source, SACLA has the capacity to deliver radiation one billion times brighter and with pulses one thousand times shorter than other existing X-ray sources. In late March, the facility marked its first milestone with beam acceleration to 8GeV and spontaneous of 0.8 Angstroms.

Only three months later, SACLA has marked a second milestone. On June 7, SACLA successfully increased the density of the by several hundred times and guided it with a precision of several micrometers to produce a bright X-ray laser with a wavelength of only 1.2 Angstroms (a photo energy of 10 keV). This matches the record of 1.2 Angstroms set at the only other operational XFEL facility in the world, the (LCLS) in the United States.

With experiments soon to commence and user operations at the facility to begin by the end of fiscal 2011, this new record offers a taste of things to come with SACLA's powerful beam, the world's most advanced X-ray .

Explore further: European XFEL Project Shines a New Light for Research

More information: The latest information will be updated on the website of SACLA: xfel.riken.jp/

Related Stories

World's First Hard X-ray Laser Achieves 'First Light'

April 21, 2009

(PhysOrg.com) -- The world's brightest X-ray source sprang to life last week at the U.S. Department of Energy's SLAC National Accelerator Laboratory. The Linac Coherent Light Source (LCLS) offers researchers the first-ever ...

SACLA X-ray free electron laser sets new record

June 13, 2011

RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI) have successfully produced a beam of X-ray laser light with a wavelength of 1.2 Angstroms, the shortest ever measured. This record-breaking light was created ...

Recommended for you

Funneling fundamental particles

August 24, 2016

Neutrinos are tricky. Although trillions of these harmless, neutral particles pass through us every second, they interact so rarely with matter that, to study them, scientists send a beam of neutrinos to giant detectors. ...

Engineers discover a high-speed nano-avalanche

August 24, 2016

Charles McLaren, a doctoral student in materials science and engineering at Lehigh University, arrived last fall for his semester of research at the University of Marburg in Germany with his language skills significantly ...

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Physicists propose method for braiding light

August 22, 2016

(Phys.org)—Physicists have proposed a way to braid three beams of light by guiding the beams along swirling, vortex-shaped defects in the optical medium through which the beams travel. The braided light would have an unusual ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.