Variation in susceptibility to a virus is the key to understanding infection biology

June 30, 2011

A new study shows that differences in the vulnerability of animals to a virus are crucial to understanding patterns of infection, and that variation in susceptibility to two marginally different viruses increases the number of infections when the two virus variants are present in the same animal. This study, by researchers from the Netherlands and Spain, will be published on June 30th in the open-access journal PLoS Computational Biology.

Models of often fail to predict how many animals will become infected and which virus variants will be present in the infected animals, even under controlled laboratory conditions. To discover whether these models are fundamentally wrong or simply not detailed enough, the researchers created four mathematical models of virus infection. They subsequently tested the predictive ability of the models against data from in which they exposed , Lepidopteran larvae, to insect viruses.

"We were surprised to find that a relatively simple model could describe the data", says Mark Zwart, one of the study´s authors and currently a postdoctoral fellow at the Instituto de Biología Molecular y Celular de Plantas, Spain. "The only ingredient we needed to add to an infection model was differences in caterpillar vulnerability to the virus. Our work confirms that virus particles independently infect animals, even in situations where we thought they might be working together."

The study improves our understanding of how virus particles interact with each other and the host animal during infection, and concludes that "Most deviations from [model] predictions may be caused by variation in host susceptibility". The extent to which this conclusion applies to other viruses and pathogens is not yet clear and a follow-up study on a wide range of different pathogens is currently being carried out.

Explore further: Hepatitis C virus blocks 'superinfection'

More information: van der Werf W, Hemerik L, Vlak JM, Zwart MP (2011) Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections. PLoS Comput Biol 7(6): e1002097. doi:10.1371/journal.pcbi.1002097

Related Stories

Hepatitis C virus blocks 'superinfection'

April 5, 2007

There’s infection and then there’s superinfection – when a cell already infected by a virus gets a second viral infection. But some viruses don’t like to share their cells. New research from Rockefeller University ...

The way to a virus' 'heart' is through its enzymes

July 9, 2008

The arrival of bluetongue virus (BTV) in the UK last year posed a major threat to the economy and the increasing temperatures of our changing climate mean it is here to stay. If we are to fight this disease, which has had ...

Scientists Develop Vaccine Against Deadly Viruses

October 4, 2006

Scientists from the Uniformed Services University of the Health Sciences (USU), in collaboration with counterparts from the Australian Animal Health Laboratory (AAHL), have developed a vaccine to fight two deadly animal viruses ...

Recommended for you

Mice can smell oxygen

December 2, 2016

The genome of mice harbours more than 1000 odorant receptor genes, which enable them to smell myriad odours in their surroundings. Researchers at the Max Planck Research Unit for Neurogenetics in Frankfurt, the University ...

How single-celled organisms navigate to oxygen

December 2, 2016

A team of researchers has discovered that tiny clusters of single-celled organisms that inhabit the world's oceans and lakes, are capable of navigating their way to oxygen. Writing in e-Life scientists at the University ...

Natural nomads, leatherback turtles opt to stay in place

December 2, 2016

Endangered leatherback sea turtles are known for their open-ocean migratory nature and nomadic foraging habits – traveling thousands of miles. But a Cornell naturalist and his colleagues have discovered an area along the ...

Neural stem cells serve as RNA highways too

December 1, 2016

Duke University scientists have caught the first glimpse of molecules shuttling along a sort of highway running the length of neural stem cells, which are crucial to the development of new neurons.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.