UW-Madison scientists create low-acrylamide potato lines

June 10, 2011

(PhysOrg.com) -- What do Americans love more than French fries and potato chips? Not much-but perhaps we love them more than we ought to. Fat and calories aside, both foods contain high levels of a compound called acrylamide, a potential carcinogen.

First discovered in foods in 2002, acrylamide is produced whenever starchy foods are fried, roasted or baked, meaning it's found in everything from doughnuts to . But fries and chips are relatively high in acrylamide compared to most starch-based snacks, and potato processors are eager to change that.

University of Wisconsin-Madison Jiming Jiang, a professor of horticulture, has a solution. As described in the current issue of , his lab has developed a promising new kind of potato that helps cut acrylamide, an innovation he created with support from USDA-ARS plant physiologist Paul Bethke, an assistant professor of horticulture. As a bonus, those potatoes also could help producers significantly reduce .

The problem starts with storage. Because fry and chip processors need potatoes year round, most of the fall harvest goes into storage, where low temperatures can cause to accumulate in the tubers, a phenomenon known as "cold-induced sweetening" in the industry. During cooking, those sugars react with free amino acids to produce acrylamide. The same reaction also causes fries and chips to turn dark brown during processing, making them unsalable.

Jiang's solution is to insert a small segment of a potato's own DNA back into its genome. The extra DNA helps block a single gene — the vacuolar acid invertase gene, which codes for an enzyme — that's responsible for converting sucrose into glucose and fructose, the sugar culprits that cause both acrylamide formation and browning. Through this process Jiang has created a number of potato lines that produce very little acrylamide when cooked.

"Regular can have acrylamide levels up around 1,000 parts per billion," says Jiang. "Ours are down around 200." Jiang's process, potentially of enormous use to the food industry, is now being patented by the Wisconsin Alumni Research Foundation.

But because they are genetically modified (GM), Jiang's potatoes can't be grown for consumption in the United States, where only a handful of GM crops have been approved and widely cultivated.

Jiang hopes that will change and notes that GM versions of corn and soybeans, which are now added to many processed food items, contain DNA from other species. The extra DNA in his low-acrylamide potatoes, on the other hand, comes from the potato genome itself.

Down the line, especially if scientists confirm acrylamide's link to human cancer, consumers may have to make an interesting choice: accept a new genetically modified crop or cut back on fries and chips.

Explore further: Gene silencing used to make better potato

Related Stories

When the chips are down -- soak them

March 6, 2008

Good news for chips lovers everywhere – new research in SCI’s Journal of the Science of Food and Agriculture shows that pre-soaking potatoes in water before frying can reduce levels of acrylamide.

Recommended for you

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.