Twin-head cucumber system reduces start-up costs

Jun 27, 2011
Cucumber plants looked the same 16 days after planting in both the twin-head (left row) and single-head (right row) systems. Credit: Photo by Xiuming Hao

Greenhouse vegetable production in North America has more than doubled in the past 10 years. While heavy investments have been made in modern greenhouses, improved cultivation technologies are essential for producers to realize the high productivity potential afforded by the improved facilities.

Gaining popularity in greenhouse vegetable production is a high-wire system in which cucumbers plants are trained into a single stem. The system allows for uniform foliar and light distribution and higher yield and quality, but requires much higher plant densities than the conventional "umbrella" system, often resulting in increased crop start-up costs. To help address these critical financial issues, researchers developed a new twin-head ''V'' high-wire cucumber system and compared it to the conventional single-head system. A report in HortTechnology detailed the performance of the twin-head system.

The researchers raised twin-head transplants by topping the after the appearance of the fourth true leaf; two strong lateral shoots were then allowed to develop and were trained into a ''V'' system after planting. Results of the 2-year experiments proved that the twin-head system achieved similar plant growth and yield as the conventional single-head system on two long English seedless cucumber cultivars (Bodega and Myrthos) and two breeding lines. "While there was little difference in between the two systems, the twin-head system had a higher percentage of medium fruit and a lower percentage of small fruit than did the single-head system with cultivar 'Bodega' ", the scientists noted.

The twin-head system significantly reduced production costs. "The material and transportation costs for single-head and twin-head transplants were the same, but since the twin-head system used only half the number of transplants of the conventional single-head system, its transplant cost was reduced by almost half", explained the study's corresponding author Xiuming Hao.

"The twin-head ''V'' high-wire cucumber system achieved the same fruit yield as the conventional single-head system and also achieved better fruit grades in some cultivars while it significantly reduced transplant costs", concluded Hao. "In this research we have shown that the twin-head ''V'' high-wire cucumber system is a more cost-effective system than the conventional single head high-wire system."

Explore further: Oregon food label measure headed for recount

More information: horttech.ashspublications.org/… nt/abstract/20/6/963

Provided by American Society for Horticultural Science

4 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Magnetic tape analysis 'sees' tampering in detail

Jul 23, 2007

The National Institute of Standards and Technology has developed an improved version of a real-time magnetic microscopy system that converts evidence of tampering on magnetic audio and video tapes—erasing, ...

Recommended for you

How can we avoid kelp beds turning into barren grounds?

53 minutes ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

Genomes of malaria-carrying mosquitoes sequenced

16 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

Bitter food but good medicine from cucumber genetics

16 hours ago

High-tech genomics and traditional Chinese medicine come together as researchers identify the genes responsible for the intense bitter taste of wild cucumbers. Taming this bitterness made cucumber, pumpkin ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.