Tornado forecasting pushes scientific limits

June 8, 2011 By Carrie Arnold
The average tornado forms in a chaotic and fast-changing environment, typically lasting for only a few minutes. It's one thing to predict that conditions are ripe for a tornado. It's quite another to predict when and where a tornado will strike. Credit: OAR/ERL/National Severe Storms Laboratory

Ernest Fawbush and Robert Miller made the first ever tornado forecast in March of 1948 using only paper, pencil, and a World War II-era radar -- but tornado forecasting has changed dramatically since that initial forecast 63 years ago.

Meteorologists now use satellites and complicated mathematical models to make their forecasts. Tornadoes, however, remain as deadly and unpredictable as ever. To date, the 2011 U.S. season has been one of the deadliest on record; a May 24 storm in Joplin, Mo. killed at least 141 people. Although the modern system of watches and warnings has undoubtedly saved many lives, most people still have little warning before a tornado strikes.

Scientists are attacking the forecast problem by improving both the radar systems used to visualize and track storms and the mathematical models used to make predictions. Although the array of radars across the U.S. is more sophisticated than the one used by Fawbush and Miller, they operate in much the same way. A mechanical, rotating dish sends out pulses of that are reflected or scattered by clouds, , and hail.

The advent of in the 1990s gave meteorologists the ability not only to see current weather conditions, but also to see where the storms likely were heading, and how quickly. Doppler radars also let meteorologists see if the storm is beginning to spin, which dramatically increases the chance a tornado will form. With this knowledge, meteorologists could provide more advance warning to the people in the likely path of the storm.

Even the most advanced Doppler radars take nearly five minutes to make a single 360-degree sweep of the sky. This means information about tornado activity can only be updated every five minutes.

"In storms that are producing a tornado, things happen very, very quickly," often in a matter of seconds, said Harold Brooks, of the National Severe Storms Laboratory in Norman, Okla. "Five minutes is a long time in the tornado world."

One of Brooks' colleagues, David Stensrud, is trying to shorten the sweep time to a minute -- or even less. Instead of a mechanically rotating dish, Stensrud is helping to create a radar system that samples the sky electronically. The flat panels don't need to swivel in order to obtain a clear picture of the entire sky. The panel's electronic sensors have another advantage over current radar dishes: they can focus on particular areas of the sky where are more likely to develop and gather data as frequently as every twenty seconds.

Stensrud said that in order to increase warning times, "you need to predict the storms before they become severe."

By gathering data more frequently, the new radar systems will allow meteorologists to better predict the onset of severe weather. The National Severe Storms Laboratory believes these new will be ready for government use in about ten years.

But meteorologists don't make forecasts based on radar data alone. They also use mathematical models to make their predictions, inputting basic data like humidity, temperature, and wind speed. The equations take this data and, using the laws of physics, show what the weather might look like in a few hours. Meteorologists update their forecast by adding current conditions to their model. Knowledge of climate conditions is rarely complete, and even small amounts of uncertainty can dramatically change a forecast.

Incorporating this uncertainty into mathematical models can allow meteorologists to give more weight to the data they know are accurate, said Ross Hoffman, chief scientist at Atmospheric and Environmental Research in Lexington, Mass. Hoffman and colleagues are working to improve a method known as 4-Dimensional Variational Data Assimilation to give scientists more skill at predicting worst-case scenarios, which gives those in the line of the storm more time to prepare and take cover.

Tornado forecasting may continue to defy even the most sophisticated radars and mathematical equations. The average tornado forms in a chaotic and fast-changing environment, typically lasting for only a few minutes. It's one thing to predict that conditions are ripe for a tornado. It's quite another to predict when and where a tornado will strike.

"Forecasting an actual tornado doesn't seem feasible now," Hoffman said. "But with advances in computing and electronics, who knows how much further we can go."

Explore further: Rapid-Scanning Doppler on Wheels Keeps Pace with Twisters

Related Stories

Rapid-Scanning Doppler on Wheels Keeps Pace with Twisters

June 1, 2005

A new Doppler radar instrument that can scan tornadoes every five to 10 seconds is prowling the Great Plains this spring in search of its first close-up twister. Newly enhanced for season-long thunderstorm tracking, the radar ...

Study: New radar system cut tornado deaths

June 29, 2005

A study finds that the number of tornado casualties in the United States has fallen by half since a network of Doppler weather radar was installed 10 years ago.

Gravity Waves Make Tornados

March 19, 2008

Did you know that there's a new breakfast food that helps meteorologists predict severe storms? Down South they call it "GrITs."

Tornado warnings are too often ignored

October 26, 2010

With big storms ripping across the Midwest, Bob Drost is hoping people are paying attention to the severe weather and tornado warnings.

Recommended for you

Could 'The Day After Tomorrow' happen?

October 9, 2015

A researcher from the University of Southampton has produced a scientific study of the climate scenario featured in the disaster movie 'The Day After Tomorrow'.

Image: Sentinel-1A captures Azore islands

October 9, 2015

This Sentinel-1A radar image was processed to depict water in blue and land in earthen colours. It features some of the Azore islands about 1600 km west of Lisbon, including the turtle-shaped Faial, the dagger-like Sao Jorge ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.