New technique makes artificial bones more natural

Jun 22, 2011
Procedure for the fabrication of artificial bone structures by combining sponge replica and electrospinning methods. Copyright : NIMS

A new technique for producing artificial bone implants has been developed by Korean researchers. By mimicking natural bone, it is hoped the implant material will better complement the natural regeneration process.

A new technique for producing artificial bone has been developed by Korean researchers. Published in the journal Science and Technology of Advanced Material (STAM), the technique combines two methods to approximate both types of . By mimicking natural bone, it is hoped the implant material will better complement the natural regeneration process.

Most previous studies have focussed on producing cancellous bone, which has a spongy, honeycombed structure. However, artificial bones for practical applications must also imitate , the hard, strong tissue found on the outer layers of bone. Cortical bone is less porous than cancellous bone, but contains canals through which the for flow. By developing a process to imitate this canal structure, the researchers made significant advances in the fabrication of artificial bones.

Bundles of polymer-based * were wrapped around 0.3mm diameter steel wires by the method of “electrospinning”, whereby fine fibres of material are drawn out by electric charge. These bundles were used to cover a scaffold of cancellous bone structure, made by the standard “sponge replica method” out of zirconia (ZrO2) and biphasic calcium phosphate (BCP). Removal of the steel wires resulted in interconnected structures mimicking small human bones.

The resulting structure had a high strength and a porosity of approximately 70%—similar to natural bone. Tests confirmed the artificial bone structure had a high degree of biocompatibility which is critical for real-world applications. However, more research is needed to evaluate the biological properties of this material both in vitro and in vivo.

The rapid ageing of the population makes bone loss and fracture a major worldwide problem and stimulates bone regeneration research. Biomimetic approaches to making artificial implants have attracted much attention, but the dependence of the healing process on interaction with the implant material requires close mimicry of the architecture of natural bone. This paper marks a significant advance in the development of materials and processing technology for the fabrication of artificial bone structures.

*HAp-loaded PMMA-PCL, or polymethylmethacrylate-polycaprolactone-hydroxyapatite

Explore further: Repeated self-healing now possible in composite materials

More information: Yang-Hee Kim and Byong-Taek Lee, Novel approach to the fabrication of artificial small bone using a combination of sponge replica and electrospinning methods, Science and Technology of Advanced Materials 12 (2011) 035002. dx.doi.org/10.1088/1468-6996/12/3/035002

Provided by National Institute for Materials Science

2 /5 (4 votes)
add to favorites email to friend print save as pdf

Related Stories

Nanotubes inspire new technique for healing broken bones

Jul 07, 2005

Scientists have shown for the first time that carbon nanotubes make an ideal scaffold for the growth of bone tissue. The new technique could change the way doctors treat broken bones, allowing them to simply inject a solution ...

Recommended for you

Metals go from strength to strength

20 hours ago

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

Chemists achieve molecular first

21 hours ago

(Phys.org) —Chemists from Trinity College Dublin have achieved a long-pursued molecular first by interlocking three molecules through a single point. Developing interlocked molecules is one of the greatest ...

User comments : 0

More news stories

Chemists achieve molecular first

(Phys.org) —Chemists from Trinity College Dublin have achieved a long-pursued molecular first by interlocking three molecules through a single point. Developing interlocked molecules is one of the greatest ...

Metals go from strength to strength

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.