Team calculates the role of buried layers in few-layer epitaxial graphene

June 8, 2011
Made of a single sheet of carbon atoms, graphene can be spun at the fastest rate of any known macroscopic object. Image credit: Wikimedia Commons.

A CNST-led collaboration with the University of Maryland and the University of Texas has computed how electrostatic interactions between electrons in different layers of few-layer graphene affect the properties of the top layer [1].

Since graphene was first extracted from bulk graphite in 2004, it has been at the center of remarkable and technological development.

A particularly promising material is graphene grown on the surface of SiC crystals by sublimation of Si from the substrate, which typically grows in few-layer graphene sheets.

Unlike graphite crystals, these layers are rotated with respect to each other so that the atoms do not line up. This rotation has surprising consequences, as found in recent measurements done at the CNST [2].

In high magnetic fields and at low temperatures, the top layer behaves in many ways like an isolated graphene sheet, but a sheet in which charge could transfer to the other layers.

The measurements also showed that at the highest fields in the study, the measured had a gap that could not be explained by a simple single particle description of the system; electrons in the top layer were interacting with other electrons, either in the same layer or in the other layers.

Explaining several aspects of the experimental data, the latest calculations reveal how electrons transfer between layers, and how under the right conditions a “correlated state” might develop between the in the top layer and other layers.

While additional experimental and theoretical research is needed to confirm this explanation, this work further demonstrates the variety of interesting phenomena that are emerging as the layers of graphene’s scientific puzzle are peeled away.

Explore further: Two graphene layers may be better than one

More information:

[1] Landau levels and band bending in few-layer epitaxial graphene, H. Min, S. Adam, Y. J. Song, J. A. Stroscio, M. D. Stiles, and A. H. MacDonald, Physical Review B 83, 155430 (2011).

[2] High-resolution tunnelling spectroscopy of a graphene quartet, Y. J. Song, A. F. Otte, Y. Kuk, Y. Hu, D. B. Torrance, P. N. First, W. A. de Heer, H. Min, S. Adam, M. D. Stiles, A. H. MacDonald, and J. A. Stroscio, Nature 467, 185-189 (2010).

Related Stories

Two graphene layers may be better than one

April 27, 2011

( -- Researchers at the National Institute of Standards and Technology have shown that the electronic properties of two layers of graphene vary on the nanometer scale. The surprising new results reveal that not ...

Seeing an atomic thickness

May 19, 2011

Scientists from NPL, in collaboration with Linkoping University, Sweden, have shown that regions of graphene of different thickness can be easily identified in ambient conditions using Electrostatic Force Microscopy (EFM).

Producing graphene layers using crystallization

March 2, 2010

( -- Ever since it's relatively recent discovery, graphene has generated a great deal of interest. Graphene is extracted from graphite in many cases, and consists of a sheet of carbon atoms bound together in a ...

Real-world graphene devices may have a bumpy ride

January 19, 2011

( -- Electronics researchers love graphene. A two-dimensional sheet of carbon one atom thick, graphene is like a superhighway for electrons, which rocket through the material with 100 times the mobility they have ...

Shining Light on Graphene-Metal Interactions

April 2, 2010

( -- By controlling the layered growth of graphene - a relatively "new" form of carbon that's just a single atom thick - researchers at Brookhaven National Laboratory have uncovered intriguing details about the ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...

Smashing metallic cubes toughens them up

October 20, 2016

Scientists at Rice University are smashing metallic micro-cubes to make them ultrastrong and tough by rearranging their nanostructures upon impact.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.