New substance may allow successful transplantation of 'marginal' livers

June 1, 2011

New research raises the possibility that the critically short supply of livers for organ donation could be expanded by treating so-called "marginal" livers with a substance that protects them from damage after being connected to recipients' blood supplies. The report appears in ACS' journal Molecular Pharmaceutics.

Ram Mahato and colleagues note that the need for liver transplants has grown over the years, though the number of available livers has not. Currently, more than 16,000 people are waiting for a liver in the U.S., but less than 7,000 were performed during the entire year of 2010. This shortage has led organ transplant teams to consider using marginal, or damaged, livers, such as those with cholestasis — a build-up of bile. But transplanting a damaged liver has risks, including a higher risk that the organ will fail. To overcome this challenge, the researchers utilized a hedgehog-signaling inhibitor to increase the odds of a successful transplant.

They found that a compound called cyclopamine prevented further injury to cholestatic livers after the blood supply was cut off then returned — a situation similar to what transplanted livers undergo. The research was performed in rats, which are stand-ins for humans in the laboratory. It provided "convincing evidence" that cyclopamine may protect cholestatic livers from additional damage after a transplant procedure and improve clinical outcomes for the patients.

Explore further: Rare 'domino' transplant preformed

More information: “Cyclopamine attenuates acute warm ischemia reperfusion injury in cholestatic rat liver: Hope for marginal livers”, Mol. Pharmaceutics, Article ASAP DOI: 10.1021/mp200115v

Cholestasis is a significant risk factor for immediate hepatic failure due to ischemia reperfusion (I/R) injury in patients undergoing liver surgery or transplantation. We recently demonstrated that inhibition of Hedgehog (Hh) signaling with cyclopamine (CYA) before I/R prevents liver injury. In this study we hypothesized that Hh signaling may modulate I/R injury in cholestatic rat liver. Cholestasis was induced by bile duct ligation (BDL). Seven days after BDL, rats were exposed to either CYA or vehicle for 7 days daily before being subjected to 30 min of ischemia and 4 h of reperfusion. Expression of Hh ligands (Sonic Hedgehog, Patched-1 and Glioblastoma-1), assessment of liver injury, neutrophil infiltration, cytokines, lipid peroxidation, cell proliferation and apoptosis were determined. Significant upregulation of Hh ligands was seen in vehicle treated BDL rats. I/R injury superimposed on these animals resulted in markedly elevated serum alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin accompanied with increased neutrophil recruitment and lipid peroxidation. Preconditioning with CYA reduced the histological damage and serum liver injury markers. CYA also reduced neutrophil infiltration, proinflammatory cytokines such as TNF-α and IL-1β expression of α-smooth muscle actin and type 1 collagen resulting in reduced fibrosis. Furthermore CYA treated animals showed reduced cholangiocyte proliferation, and apoptosis. Hepatoprotection by CYA was conferred by reduced activation of protein kinase B (Akt) and extracellular signal regulated kinase (ERK). Endogenous Hh signaling in cholestasis exacerbates inflammatory injury during liver I/R. Blockade of Hh pathway represents a clinically relevant novel approach to limit I/R injury in cholestatic marginal liver.

Related Stories

Rare 'domino' transplant preformed

October 3, 2006

U.S. transplant surgeons have performed a "domino" transplant procedure to save two patients suffering a life-threatening liver condition.

Keeping hepatitis C virus at bay after a liver transplant

October 1, 2009

One of the most common reasons for needing a liver transplant is liver failure or liver cancer caused by liver cell infection with hepatitis C virus (HCV). However, in nearly all patients the new liver becomes infected with ...

Researchers engineer miniature human livers in the lab

October 30, 2010

Researchers at the Institute for Regenerative Medicine at Wake Forest University Baptist Medical Center have reached an early, but important, milestone in the quest to grow replacement livers in the lab. They are the first ...

Recommended for you

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Anti-aging treatment for smart windows

October 1, 2015

Electrochromic windows, so-called 'smart windows', share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University have now worked out an entirely new way to rejuvenate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.