Sniffing out a new source of stem cells

Jun 13, 2011

A team of researchers, led by Emmanuel Nivet, now at the Salk Institute for Biological Studies, La Jolla, has generated data in mice that suggest that adult stem cells from immune system tissue in the smell-sensing region of the human nose (human olfactory ecto–mesenchymal stem cells [OE-MSCs]) could provide a source of cells to treat brain disorders in which nerve cells are lost or irreparably damaged.

Stem are considered by many to be promising candidate sources of cells for the regeneration and repair of tissues damaged by various brain disorders (including traumatic brain injury).

There are two types of stem cell usually considered in this therapeutic context: embryonic stem (ES) cells, which are derived from early embryos; and induced pluripotent stem (iPS) cells, which are derived by reprogramming cells of the body such that they have the ability to generate any cell type. Ethical and technical issues have so far limited clinical development of therapeutic approaches using ES and iPS cells, respectively, meaning that researchers are seeking alternative stem cell sources.

Nivet and colleagues found that upon transplantation into with damage to the hippocampal region of their brain (a region important for learning and memory) OE-MSCs moved toward the site of damage, where they developed into nerve cells and also stimulated endogenous nerve cell generation. Importantly, the treated mice showed improvement in learning and memory. These data suggest OE-MSCs might be of tremendous utility in the clinic.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: www.jci.org/articles/view/4448… 4b09fd39d7a54a394fb1

Provided by Journal of Clinical Investigation

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Cells derived from different stem cells: Same or different?

May 02, 2011

There are two types of stem cell considered promising sources of cells for regenerative therapies: ES and iPS cells. Recent data indicate these cells are molecularly different, raising the possibility that cells derived from ...

Stem cells reverse disease in a model of Parkinson's disease

May 16, 2011

In a new study to be published in the Journal of Clinical Investigation, researchers compared the ability of cells derived from different types of human stem cell to reverse disease in a rat model of Parkinson disease and id ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.