Singapore researchers invent broadband graphene polarizer

Jun 06, 2011

Researchers at the National University of Singapore have invented a graphene-based polarizer that can broaden the bandwidth of prevailing optical fiber-based telecommunication systems.

The graphene research team, led by Professor Kian Ping Loh at the National University of Singapore, invented an ultra-slim broadband that uses graphene, a single-atomic-layer crystallized carbon, to convert light beam into polarized light. This is the first of using graphene as an ultrathin waveguide to couple and modulate light. Light modulation by means of polarization management is vital to avoid signal fading and error in coherent optical communications as well as optical gyroscopes and interferometric sensors.

In principle, the polarizing ability of graphene covers the telecommunication bands from visible to mid-infrared. This means that graphene polarizer can provide all-in-one solution for multiple-channel high-speed optical communications, the researchers said.

The researchers skilfully transferred graphene grown by chemical vapour deposition on the side-polished to fabricate the graphene polarizer and measured light polarization at different wavelengths. Unlike polarizers made from thin or semiconductor dielectric, a graphene polarizer has the unique ability to filter out transverse-magnetic-mode and supports transverse-electric-mode surface wave propagation.

The broadband graphene polarizer work was published in the journal and appeared online on 29 May 2011.

"The results reported in this paper can have a strong impact in the development of graphene-based optical devices for photonic applications…the science behind it is excellent…" says professor Antonio Castro Neto of National University of Singapore.

The Singapore team has earlier pioneered graphene mode-locked lasers in 2009. This work was another breakthrough in bringing graphene photonics a step closer to real applications.

"In the near future, we can envision ultrathin graphene-based photonic circuits with multiple functions of light creation, routing, modulation or detection," said Dr. Qiaoliang Bao, who is the project leader of the pioneering work.

Explore further: Yellowstone's thermal springs—their colors unveiled

More information: Broadband graphene polarizer, Nature Photonics (2011) doi:10.1038/nphoton.2011.102

Conventional polarizers can be classified into three main modes of operation: sheet polarizer using anisotropic absorption media, prism polarizer by refraction and Brewster-angle polarizer by reflection. These polarizing components are not easily integrated with photonic circuits. The in-line fibre polarizer, which relies on polarization-selective coupling between the evanescent field and birefringent crystal or metal is a promising alternative because of its compatibility with most fibre-optic systems. Here, we demonstrate the operation of a broadband fibre polarizer based on graphene, an ultrathin two-dimensional carbon material. The out-coupled light in the telecommunication band shows a strong s-polarization effect with an extinction ratio of 27 dB. Unlike polarizers made from thin metal film, a graphene polarizer can support transverse-electric-mode surface wave propagation due to its linear dispersion of Dirac electrons.

Provided by National University of Singapore

5 /5 (2 votes)

Related Stories

Light-speed nanotech: Controlling the nature of graphene

Jan 21, 2009

Researchers at Rensselaer Polytechnic Institute have discovered a new method for controlling the nature of graphene, bringing academia and industry potentially one step closer to realizing the mass production ...

Producing graphene layers using crystallization

Mar 02, 2010

(PhysOrg.com) -- Ever since it's relatively recent discovery, graphene has generated a great deal of interest. Graphene is extracted from graphite in many cases, and consists of a sheet of carbon atoms bound together in a ...

Shining light on graphene sensors

Jan 10, 2011

National Physical Laboratory, together with an international team of scientists, have published research showing how light can be used to control graphene's electrical properties. This advance is an important ...

Seeing an atomic thickness

May 19, 2011

Scientists from NPL, in collaboration with Linkoping University, Sweden, have shown that regions of graphene of different thickness can be easily identified in ambient conditions using Electrostatic Force ...

AMO Manufactures First Graphene Transistors

Feb 08, 2007

In the scope of his innovative project ALEGRA the AMO nanoelectronics group of Dr. Max Lemme was able to manufacture top-gated transistor-like field-effect devices from monolayer graphene.

Recommended for you

Yellowstone's thermal springs—their colors unveiled

Dec 19, 2014

Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.