First self-powered device with wireless data transmission

Jun 15, 2011

Scientists are reporting development of the first self-powered nano-device that can transmit data wirelessly over long distances. In a study in ACS's journal Nano Letters, they say it proves the feasibility of a futuristic genre of tiny implantable medical sensors, airborne and stationary surveillance cameras and sensors, wearable personal electronics, and other devices that operate independently without batteries on energy collected from the environment.

Zhong Lin Wang and colleagues explain that advances in electronics have opened the door to developing tiny devices that operate battery-free on minute amounts of electricity that can be harvested from the pulse of a blood vessel, a gentle breeze, or the motions of a person walking. "It is entirely possible to drive the devices by scavenging energy from sources in the environment such as gentle airflow, vibration, sonic wave, solar, chemical, and/or thermal energy," the scientists explain.

The device consists of a nanogenerator that produces electricity from mechanical vibration/triggering, a capacitor to store the energy, and electronics that include a sensor and a similar to those in Bluetooth mobile phone headsets. Their device transmitted that could be detected by an ordinary commercial radio at distances of more than 30 feet.

Explore further: Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch

More information: “Self-Powered System with Wireless Data Transmission” Nano Lett., 2011, 11 (6), pp 2572–2577 DOI: 10.1021/nl201505c

Abstract
We demonstrate the first self-powered system driven by a nanogenerator (NG) that works wirelessly and independently for long-distance data transmission. The NG was made of a free cantilever beam that consisted of a five-layer structure: a flexible polymer substrate, ZnO nanowire textured films on its top and bottom surfaces, and electrodes on the surfaces. When it was strained to 0.12% at a strain rate of 3.56% S–1, the measured output voltage reached 10 V, and the output current exceeded 0.6 μA (corresponding power density 10 mW/cm3). A system was built up by integrating a NG, rectification circuit, capacitor for energy storage, sensor, and RF data transmitter. Wireless signals sent out by the system were detected by a commercial radio at a distance of 5–10 m. This study proves the feasibility of using ZnO nanowire NGs for building self-powered systems, and its potential application in wireless biosensing, environmental/infrastructure monitoring, sensor networks, personal electronics, and even national security.

Related Stories

Running Hamsters Can Power Nano Devices (Video)

Feb 12, 2009

(PhysOrg.com) -- Among the vast number of untapped energy sources are finger taps, heartbeats, and even hamsters running on exercise wheels. In a recent study, researchers from Georgia Tech have shown that ...

Radio Waves: Alternative Power Source

Jul 20, 2010

(PhysOrg.com) -- Researchers at Duke University are harvesting ambient radio waves to power small microprocessor devices that consume very little energy. Devices such as sensors that monitor critical environmental ...

Recommended for you

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

jscroft
3 / 5 (2) Jun 15, 2011
Smart dust.
hyongx
not rated yet Jul 07, 2011
It's like a shake-and-charge flashlight, but tiny, and with a different EM output spectrum.