Self-assembling electronic nano-components

June 20, 2011
“Self-organization” of nano-devices: Magnetic molecules (green) arrange on a carbon nanotube (black) to build an electronic component Credit: Photo: C. Grupe, KIT

Magnetic storage media such as hard drives have revolutionized the handling of information: We are used to dealing with huge quantities of magnetically stored data while relying on highly sensitive electronic components. And hope to further increase data capacities through ever smaller components. Together with experts from Grenoble and Strasbourg, researchers of KIT's Institute of Nanotechnology (INT) have developed a nano-component based on a mechanism observed in nature.

What if the very tininess of a component prevented one from designing the necessary tools for its manufacture? One possibility could be to "teach" the individual parts to self-assemble into the desired product. For fabrication of an electronic nano-device, a team of INT researchers headed by Mario Ruben adopted a trick from nature: Synthetic were applied to magnetic molecules in such a way that the latter docked on to the proper positions on a nanotube without any intervention. In nature, green leaves grow through a similar self-organizing process without any impetus from subordinate mechanisms. The adoption of such principles to the manufacture of electronic components is a paradigm shift, a novelty.

The nano-switch was developed by a European team of scientists from Centre National de la Recherche Scientifique (CNRS) in Grenoble, Institut de Physique et Chimie des Materiaux at the University of Strasbourg, and KIT's INT. It is one of the invention's particular features that, unlike the conventional electronic components, the new component does not consist of materials such as metals, or but entirely of soft materials such as carbon and molecules.

Terbium, the only magnetic that is used in the device, is embedded in . Terbium reacts highly sensitively to external magnetic fields. Information as to how this atom aligns along such magnetic fields is efficiently passed on to the current flowing through the nanotube. The Grenoble CNRS research group headed by Dr. Wolfgang Wernsdorfer succeeded in electrically reading out the magnetism in the environment of the nano-component. The demonstrated possibility of addressing electrically single magnetic molecules opens a completely new world to spintronics, where memory, logic and possibly quantum logic may be integrated.

The function of the spintronic nano-device is described in the July issue of Nature Materials for low temperatures of approximately one degree Kelvin, which is -272 degrees Celsius. Efforts are taken by the team of researchers to further increase the component's working temperature in the near future.

Explore further: Here come the nanoSQUIDs

More information: Paper online: DOI:10.1038/Nmat3050

Related Stories

Here come the nanoSQUIDs

October 5, 2006

A French scientific team says it has developed the first nanoSQUID -- or superconducting quantum interference device -- for measuring magnetic fields.

Memory in artificial atoms

April 7, 2008

Nanophysicists have made a discovery that can change the way we store data on our computers. This means that in the future we can store data much faster, and more accurate. Their discovery has been published in the scientific ...

Carbon nanotubes as transistor material

July 21, 2010

Swiss researchers have built a transistor whose crucial element is a carbon nano-tube, suspended between two contacts, with outstanding electronic properties. A novel fabrication approach allowed the scientists to construct ...

Unexpected magnetism discovered

October 18, 2010

Theoretical work done at the Department of Energy's Oak Ridge National Laboratory has provided a key to understanding an unexpected magnetism between two dissimilar materials.

Smallest magnetic field sensor in the world developed

February 22, 2011

Further development of modern information technology requires computer capacities of increased efficiency at reasonable costs. In the past, integration density of the relevant electronic components was increased constantly. ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

hush1
not rated yet Jun 23, 2011
Reminds me of the key and lock mechanisms use extensively in biological life.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.