Scientists develop a fatty 'kryptonite' to defeat multidrug-resistant 'Super bugs'

Jun 16, 2011

"Super bugs," which can cause wide-spread disease and may be resistant to most, if not all, conventional antibiotics, still have their weaknesses. A team of Canadian scientists discovered that specific mixtures of antimicrobial agents presented in lipid (fatty) mixtures can significantly boost the effectiveness of those agents to kill the resistant bacteria. This discovery was published online in The FASEB Journal.

According to a researcher involved in the study, Richard Epand, Ph.D. from the Department of Biochemistry and Biomedical Science at McMaster University in Hamilton, Ontario, Canada, "This study may contribute to overcoming the lethal effects of that is becoming an increasing clinical problem, particularly in hospitals."

To make their discovery, Epand and colleagues conducted experiments using groups of mice infected with lethal doses of multidrug-resistant Escherichia coli (E. coli). Researchers then treated the mice with conventional drug combinations or encapsulated in lipid mixtures. They found that certain lipid mixtures caused the drugs to act together in a synergistic manner. In this form, the drugs were much more effective in increasing the survival rate of the mice because they overcame the used by these bacteria to defeat therapeutic agents. This study also demonstrated a novel use of a new family of antimicrobial agents called oligo-acyl-lysyls, which have the potential to be combined with other drugs and lipid mixtures with similar properties to yield a platform for other specific applications.

"As we've seen in the recent E.Coli outbreak in Germany, bacteria can mutate to become super bugs that resist antibiotics," said Gerald Weissmann, M.D., Editor-in-Chief of The , "Thanks to this new, lipid-based antibiotic therapy. multidrug-resistant bacteria may begin to look more like Jimmy Olsen and a lot less like Superman."

Explore further: Genomes of malaria-carrying mosquitoes sequenced

More information: Hadar Sarig, Dafna Ohana, Raquel F. Epand, Amram Mor, and Richard M. Epand. Functional studies of cochleate assemblies of an oligo-acyl-lysyl with lipid mixtures for combating bacterial multidrug resistance. FASEB J; doi:10.1096/fj.11-183764

add to favorites email to friend print save as pdf

Related Stories

New antibiotic beats superbugs at their own game

Jul 03, 2008

The problem with antibiotics is that, eventually, bacteria outsmart them and become resistant. But by targeting the gene that confers such resistance, a new drug may be able to finally outwit them. Rockefeller ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

Nov 27, 2014

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.