Scientists develop a fatty 'kryptonite' to defeat multidrug-resistant 'Super bugs'

Jun 16, 2011

"Super bugs," which can cause wide-spread disease and may be resistant to most, if not all, conventional antibiotics, still have their weaknesses. A team of Canadian scientists discovered that specific mixtures of antimicrobial agents presented in lipid (fatty) mixtures can significantly boost the effectiveness of those agents to kill the resistant bacteria. This discovery was published online in The FASEB Journal.

According to a researcher involved in the study, Richard Epand, Ph.D. from the Department of Biochemistry and Biomedical Science at McMaster University in Hamilton, Ontario, Canada, "This study may contribute to overcoming the lethal effects of that is becoming an increasing clinical problem, particularly in hospitals."

To make their discovery, Epand and colleagues conducted experiments using groups of mice infected with lethal doses of multidrug-resistant Escherichia coli (E. coli). Researchers then treated the mice with conventional drug combinations or encapsulated in lipid mixtures. They found that certain lipid mixtures caused the drugs to act together in a synergistic manner. In this form, the drugs were much more effective in increasing the survival rate of the mice because they overcame the used by these bacteria to defeat therapeutic agents. This study also demonstrated a novel use of a new family of antimicrobial agents called oligo-acyl-lysyls, which have the potential to be combined with other drugs and lipid mixtures with similar properties to yield a platform for other specific applications.

"As we've seen in the recent E.Coli outbreak in Germany, bacteria can mutate to become super bugs that resist antibiotics," said Gerald Weissmann, M.D., Editor-in-Chief of The , "Thanks to this new, lipid-based antibiotic therapy. multidrug-resistant bacteria may begin to look more like Jimmy Olsen and a lot less like Superman."

Explore further: Sall4 is required for DNA repair in stem cells

More information: Hadar Sarig, Dafna Ohana, Raquel F. Epand, Amram Mor, and Richard M. Epand. Functional studies of cochleate assemblies of an oligo-acyl-lysyl with lipid mixtures for combating bacterial multidrug resistance. FASEB J; doi:10.1096/fj.11-183764

add to favorites email to friend print save as pdf

Related Stories

New antibiotic beats superbugs at their own game

Jul 03, 2008

The problem with antibiotics is that, eventually, bacteria outsmart them and become resistant. But by targeting the gene that confers such resistance, a new drug may be able to finally outwit them. Rockefeller ...

Recommended for you

Sall4 is required for DNA repair in stem cells

1 hour ago

A protein that helps embryonic stem cells (ESCs) retain their identity also promotes DNA repair, according to a study in The Journal of Cell Biology. The findings raise the possibility that the protein, Sall4, ...

Desmoplakin's tail gets the message

1 hour ago

Cells control the adhesion protein desmoplakin by modifying the tail end of the protein, and this process goes awry in some patients with arrhythmogenic cardiomyopathy, according to a study in The Journal of ...

Looking for alternatives to antibiotics

1 hour ago

Bacteria that talk to one another and organize themselves into biofilms are more resistant to antibiotics. Researchers are now working to develop drugs that prevent bacteria from communicating.

How is the membrane protein folded?

2 hours ago

A key factor in the biosynthesis and stable expression of multi-pass transmembrane proteins was discovered, and its loss is thought to cause retinal degeneration. The factor works especially for multi-pass ...

Unlocking the key to immunological memory in bacteria

3 hours ago

A powerful genome editing tool may soon become even more powerful. Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) have unlocked the key to how bacteria are able to "steal" genetic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.