Safety of nanoparticles in food crops is still unclear

Jun 01, 2011

With the curtain about to rise on a much-anticipated new era of "nanoagriculture" — using nanotechnology to boost the productivity of plants for food, fuel, and other uses —scientists are reporting a huge gap in knowledge about the effects of nanoparticles on corn, tomatoes, rice and other food crops. Their article appears in ACS' Journal of Agricultural and Food Chemistry.

Jorge Gardea-Torresdey and colleagues at The University of Texas at El Paso, a co- investigator for the NSF/EPA University of California Center for Environmental Implications of Nanotechnology, note that , which are 1/50,000th the width of a human hair, are used in products ranging from medicines to cosmetics. The particles also could end up in the environment, settling in the soil, especially as fertilizers, growth enhancers and other nanoagricultural products hit the market. Some plants can take-up and accumulate nanoparticles. But it is unclear whether this poses a problem for plants or for the animals (like humans) that eat them. So, the researchers sorted through the scientific literature looking for evidence to settle the safety question.

In the article, the scientists analyzed nearly 100 scientific articles on the effects of different types of nanoparticles on edible plants. They found that the uptake and build-up of nanoparticles varies, and these factors largely depend on the type of plant and the size and chemical composition of the nanoparticles. "This literature review has confirmed that knowledge on plant toxicity of [nanomaterials] is at the foundation stage," the article states, noting that the emerging field of nanoecotoxicology is starting to tackle this topic.

Explore further: Nanocontainers for nanocargo: Delivering genes and proteins for cellular imaging, genetic medicine and cancer therapy

More information: “Interaction of Nanoparticles with Edible Plants and Their Possible Implications in the Food Chain”, J. Agric. Food Chem., 2011, 59 (8), pp 3485–3498. DOI: 10.1021/jf104517j

Abstract
The uptake, bioaccumulation, biotransformation, and risks of nanomaterials (NMs) for food crops are still not well understood. Very few NMs and plant species have been studied, mainly at the very early growth stages of the plants. Most of the studies, except one with multiwalled carbon nanotubes performed on the model plant Arabidopsis thaliana and another with ZnO nanoparticles (NPs) on ryegrass, reported the effect of NMs on seed germination or 15-day-old seedlings. Very few references describe the biotransformation of NMs in food crops, and the possible transmission of the NMs to the next generation of plants exposed to NMs is unknown. The possible biomagnification of NPs in the food chain is also unknown.

add to favorites email to friend print save as pdf

Related Stories

New method for recovering pricey nanoparticles

Apr 14, 2010

Scientists are reporting first use of a new method that may make it easier for manufacturers to recover, recycle, and reuse nanoparticles, some of which ounce for ounce can be more precious than gold. The ...

Recommended for you

Engineers show light can play seesaw at the nanoscale

16 hours ago

University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major ...

Engineered proteins stick like glue—even in water

Sep 21, 2014

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed ...

Smallest possible diamonds form ultra-thin nanothreads

Sep 21, 2014

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

User comments : 0