SACLA X-ray free electron laser sets new record

Jun 13, 2011

RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI) have successfully produced a beam of X-ray laser light with a wavelength of 1.2 Angstroms, the shortest ever measured. This record-breaking light was created using SACLA, a cutting-edge X-ray Free Electron Laser (XFEL) facility unveiled by RIKEN in February 2011 in Harima, Japan. SACLA (SPring-8 Angstrom Compact free electron LAser) opens a window into the structure of atoms and molecules at a level of detail never seen before.

The use of ultra high-intensity X-ray light to explore the miniature structure of matter, until recently inconceivable, is today transforming how we visualize the atomic world.. By providing much shorter wavelengths and higher intensities than other lasers, XFEL enables researchers to directly observe and manipulate objects on an unrivalled scale, opening new research opportunities in fields ranging from medicine and drug discovery to nanotechnology.

One of only two facilities in the world to offer this novel light source, SACLA has the capacity to deliver radiation one billion times brighter and with pulses one thousand times shorter than other existing X-ray sources. In late March, the facility marked its first milestone with beam acceleration to 8GeV and spontaneous of 0.8 Angstroms.

Only three months later, SACLA has marked a second milestone. On June 7, SACLA successfully increased the density of the by several hundred times and guided it with a precision of several micrometers to produce a bright X-ray laser with a record-breaking wavelength of only 1.2 Angstroms (a photo energy of 10 keV). The new measurement far exceeds the previous record of 1.5 Angstroms set in 2009 at the only other operational XFEL facility in the world, the (LCLS) in the United States.

With experiments soon to commence and user operations at the facility to begin by the end of fiscal 2011, this new record offers a taste of things to come with SACLA's powerfulbeam, the world's most advanced X-ray free electron laser.

Explore further: LCD technology maintains 3D images it displays without drawing power

Related Stories

World's First Hard X-ray Laser Achieves 'First Light'

Apr 21, 2009

(PhysOrg.com) -- The world's brightest X-ray source sprang to life last week at the U.S. Department of Energy's SLAC National Accelerator Laboratory. The Linac Coherent Light Source (LCLS) offers researchers ...

FLASH Imaging Redux: Nano-Cinema is Born

Jul 08, 2008

Flash imaging of nanoscale objects undergoing ultrafast changes is now a technical possibility, according to a recent paper published in the June 22 edition of Nature Photonics. The results are a direct precur ...

Recommended for you

Cooling with molecules

11 hours ago

An international team of scientists have become the first ever researchers to successfully reach temperatures below minus 272.15 degrees Celsius – only just above absolute zero – using magnetic molecules. ...

A 'Star Wars' laser bullet

13 hours ago

Action-packed science-fiction movies often feature colourful laser bolts. But what would a real laser missile look like during flight, if we could only make it out? How would it illuminate its surroundings? ...

User comments : 0