SACLA X-ray free electron laser sets new record

Jun 13, 2011

RIKEN and the Japan Synchrotron Radiation Research Institute (JASRI) have successfully produced a beam of X-ray laser light with a wavelength of 1.2 Angstroms, the shortest ever measured. This record-breaking light was created using SACLA, a cutting-edge X-ray Free Electron Laser (XFEL) facility unveiled by RIKEN in February 2011 in Harima, Japan. SACLA (SPring-8 Angstrom Compact free electron LAser) opens a window into the structure of atoms and molecules at a level of detail never seen before.

The use of ultra high-intensity X-ray light to explore the miniature structure of matter, until recently inconceivable, is today transforming how we visualize the atomic world.. By providing much shorter wavelengths and higher intensities than other lasers, XFEL enables researchers to directly observe and manipulate objects on an unrivalled scale, opening new research opportunities in fields ranging from medicine and drug discovery to nanotechnology.

One of only two facilities in the world to offer this novel light source, SACLA has the capacity to deliver radiation one billion times brighter and with pulses one thousand times shorter than other existing X-ray sources. In late March, the facility marked its first milestone with beam acceleration to 8GeV and spontaneous of 0.8 Angstroms.

Only three months later, SACLA has marked a second milestone. On June 7, SACLA successfully increased the density of the by several hundred times and guided it with a precision of several micrometers to produce a bright X-ray laser with a record-breaking wavelength of only 1.2 Angstroms (a photo energy of 10 keV). The new measurement far exceeds the previous record of 1.5 Angstroms set in 2009 at the only other operational XFEL facility in the world, the (LCLS) in the United States.

With experiments soon to commence and user operations at the facility to begin by the end of fiscal 2011, this new record offers a taste of things to come with SACLA's powerfulbeam, the world's most advanced X-ray free electron laser.

Explore further: Understanding spectral properties of broadband biphotons

add to favorites email to friend print save as pdf

Related Stories

World's First Hard X-ray Laser Achieves 'First Light'

Apr 21, 2009

(PhysOrg.com) -- The world's brightest X-ray source sprang to life last week at the U.S. Department of Energy's SLAC National Accelerator Laboratory. The Linac Coherent Light Source (LCLS) offers researchers ...

FLASH Imaging Redux: Nano-Cinema is Born

Jul 08, 2008

Flash imaging of nanoscale objects undergoing ultrafast changes is now a technical possibility, according to a recent paper published in the June 22 edition of Nature Photonics. The results are a direct precur ...

Recommended for you

Understanding spectral properties of broadband biphotons

Mar 26, 2015

Advances in quantum optical technologies require scientists to control and exploit the properties of so-called biphotons. Biphotons occur when two photons become 'quantum-entangled' - spatially separate entities ...

Scientists build a nanolaser using a single atomic sheet

Mar 24, 2015

University of Washington scientists have built a new nanometer-sized laser—using the thinnest semiconductor available today—that is energy efficient, easy to build and compatible with existing electronics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.