Driving a robot from Space Station

Jun 30, 2011
The Justin mobile robotic system, developed at the German Aerospace Center, DLR, with its compliant controlled lightweight arms and its two four-fingered hands, is an ideal experimental platform. The mobile platform allows the long-range autonomous operation of the system. The independent wheels respond to the requirements of Justin's upper body during manipulation tasks. Sensors and cameras allow the 3D reconstruction of the robot's environment, enabling Justin to perform his work autonomously. Credits: DLR

(PhysOrg.com) -- Meet Justin, an android who will soon be controlled remotely by the astronauts in ESA’s Columbus laboratory on the International Space Station. With this and other intriguing experiments like the Eurobot rover, ESA is paving the way for exploring the Moon and planets with tele-operated robots.

In two to three years, the experimental robot on Earth will faithfully mimic the movements of an astronaut on the .

By wearing an exoskeleton – a combination of arm and glove with electronic aids to reproduce the sensations a human hand would feel – a distant operator can work as though he were there.

To help turn robotics and telepresence into a standard tool for space missions, ESA is linking the Space Station and Earth for remotely controlling terrestrial robotic experiments from the orbital outpost.

This Meteron (Multi-purpose End-To-End Robotic Operations Network) initiative is a testbed for future missions to the Moon, Mars and other celestial bodies.

As a tool for preparing the METERON communications infrastructure, astronauts will control a communications test robot such as this one, via a control room located at ESA's European Space Operations Centre, Darmstadt. Credits: ESA

“The Space Station is the perfect orbital platform to simulate very realistic scenarios for human exploration,” says Kim Nergaard, ESA’s Meteron coordinator.

“First we have to set up a robust communication architecture, establish an operations system and define a protocol to allow astronauts, robots and our ESA control centre to work efficiently together. This is not as easy a task as it seems.”

Many ideas around
 
ESA called earlier this year for new ideas for the Space Station to be used as a testbed for exploration missions. Many proposals called for operating ground-based robots from a workstation on the Station.

“The multitude of submissions shows the strength of the idea,” comments Philippe Schoonejans, ESA’s Head of Robotics in the Human Spaceflight and Operations directorate.

"This allows ESA to take into account all suggested experiments and give opportunities to the countries, companies and institutes who have shown their interest by submitting the idea."

"Meteron is suitable for early realisation because it can exploit the existing infrastructure and technologies without requiring huge investments," explains François Bosquillon de Frescheville, responsible for ESA future human exploration mission operations concepts studies, whose idea triggered the programme.
  
First a rover, then an android

In the first Meteron tests, the Station astronauts will operate ESA’s Eurobot prototype from a computer equipped with special screens and a joystick.
This prototype is a four-wheel rover with two arms, an advanced navigation system, cameras and sensors that has been under testing since 2008 at the Agency’s ESTEC space research and technology centre in the Netherlands.
 

The mobile robotic system Justin, developed at german Aerospace Center DLR, with its compliant controlled light weight arms and its two four finger hands is an ideal experimental platform for these research issues. The mobile platform allows the long range autonomous operation of the system. The individually movable, spring born wheels match the special requirements of Justin's upper body during manipulation tasks. Sensors and cameras allow the 3D reconstruction of the robot's environment and therefore enable Justin to perform given tasks autonomously. Credits: DLR

In the next phase, the engineers will allow astronauts to control a with the sense of force and ‘touch’. It can be connected to robots like Justin, developed by the DLR German Aerospace Center.

“With these senses, the astronauts will have a real feeling of the forces that the arms of the robots are experiencing in their environment,” explains André Schiele, in charge of ESA’s Telerobotics & Haptics Laboratory.

“For example, when they push against a rock or do more complex tasks such as setting up hardware.”

Whatever route the future exploration of Moon and Mars might follow, it will require sophisticated communications and advanced tools. Boosted by new human–machine interface technology, in orbit will almost certainly link up with robots to explore planetary surfaces.

Explore further: NASA: Engineer vital to 1969 moon landing dies

add to favorites email to friend print save as pdf

Related Stories

Exploring Rio Tinto Eurobotically

May 02, 2011

No wonder it is called Red River: it looks like it could be on the red planet rather than in Spain. The landscape and terrain make it a perfect place for simulating a Mars sortie.

Zapping deadly bacteria using space technology

May 27, 2011

Technology developed with ESA funding and drawing on long-running research aboard the International Space Station is opening up a new way to keep hospital patients safe from infections.

Looking at the volatile side of the Moon

Jun 01, 2011

Four decades after the first Moon landing, our only natural satellite remains a fascinating enigma. Specialists from Europe and the US have been looking at ESA’s proposed Lunar Lander mission to find ...

Robots: our helpers in space

Dec 04, 2004

A big advantage of space robots is that they need neither food nor drink and can support very inhospitable conditions. More important still, although expensive to design and produce, their loss is always preferable to that ...

Recommended for you

Testing immune cells on the International Space Station

5 hours ago

The human body is fine-tuned to Earth's gravity. A team headed by Professor Oliver Ullrich from the University of Zurich's Institute of Anatomy is now conducting an experiment on the International Space Station ...

Easter morning delivery for space station

11 hours ago

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

NASA's space station Robonaut finally getting legs

Apr 19, 2014

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Sun emits a mid-level solar flare

Apr 18, 2014

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Starbound
not rated yet Jun 30, 2011
Excellent! Earth based master-slave systems could one day drastically cut the cost of conducting experiments in space.

More news stories

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.