New research improves quality of free electron laser

Jun 02, 2011

The free electron laser is the next step in the development of equipment to help us see the structure of materials. Nino Čutić at MAX-lab in Lund, Sweden, has done a PhD in further improving the test free electron laser at the laboratory.

As a member of a small team that works with the test free electron laser at MAX-lab, Nino Čutić has helped to make improvements to the technology. The long-term aim of the experiment is to help develop better full-scale free electron lasers than those in existence today.

A free electron laser can be very large – often several hundred metres long – and requires accelerators and magnet structures in order to function. Instead of using gas or crystals, like in a ‘normal’ laser, free, unattached electrons are used. When the electrons, which have gained high speed in an accelerator, lose energy in the magnet structures, they emit light. With the free electron laser technology, this light can gain the characteristics of a laser but at new wavelengths, and this light can be used to study materials. Among other things, greater understanding can be gained of molecular structures and chemical processes.

In MAX-lab’s test , MAX-lab’s existing accelerator has been used in combination with a conventional laser. Nino Čutić’s work attempts to synchronise the electron pulse from the accelerator with the laser pulse from the conventional laser in time and space – something which can be difficult. The electron pulse is around one third of a millimetre long and the laser pulse is around a tenth of a millimetre, and both travel at the speed of light. Nino Čutić has built an electro-optic system and used it to improve the stability of the laser beam. The precision has increased – the overlap between the electron pulse and the pulse is now at around 0.3 picoseconds.

Explore further: 'Dressed' laser aimed at clouds may be key to inducing rain, lightning

More information: Nino Čutić’s thesis is entitled Timing Diagnostics and Coherent Harmonics from a Test-FEL.

add to favorites email to friend print save as pdf

Related Stories

Physicists observe electron ejected from atom for first time

Oct 12, 2010

Physicists at the University of California, Berkeley in collaboration with researchers from the Max Planck Institute of Quantum Optics and the U.S. Department of Energy's Lawrence Berkeley National Laboratory, became the ...

Laser light in the deep infrared

Aug 23, 2006

Free-electron lasers (FEL) are large and expensive, but they can deliver unique light for research and applications. On August 21, 2006, at the Forschungszentrum Rossendorf (FZR) in Dresden, Germany, the second ...

Watching Electrons with Lasers

Nov 06, 2008

(PhysOrg.com) -- A team of researchers from the Stanford PULSE Institute for Ultrafast Energy Science at SLAC National Accelerator Laboratory has recently moved a step closer to visualizing the motions of ...

Recommended for you

Robotics goes micro-scale

Apr 17, 2014

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

User comments : 0

More news stories

Could 'Jedi Putter' be the force golfers need?

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...