New research improves quality of free electron laser

Jun 02, 2011

The free electron laser is the next step in the development of equipment to help us see the structure of materials. Nino Čutić at MAX-lab in Lund, Sweden, has done a PhD in further improving the test free electron laser at the laboratory.

As a member of a small team that works with the test free electron laser at MAX-lab, Nino Čutić has helped to make improvements to the technology. The long-term aim of the experiment is to help develop better full-scale free electron lasers than those in existence today.

A free electron laser can be very large – often several hundred metres long – and requires accelerators and magnet structures in order to function. Instead of using gas or crystals, like in a ‘normal’ laser, free, unattached electrons are used. When the electrons, which have gained high speed in an accelerator, lose energy in the magnet structures, they emit light. With the free electron laser technology, this light can gain the characteristics of a laser but at new wavelengths, and this light can be used to study materials. Among other things, greater understanding can be gained of molecular structures and chemical processes.

In MAX-lab’s test , MAX-lab’s existing accelerator has been used in combination with a conventional laser. Nino Čutić’s work attempts to synchronise the electron pulse from the accelerator with the laser pulse from the conventional laser in time and space – something which can be difficult. The electron pulse is around one third of a millimetre long and the laser pulse is around a tenth of a millimetre, and both travel at the speed of light. Nino Čutić has built an electro-optic system and used it to improve the stability of the laser beam. The precision has increased – the overlap between the electron pulse and the pulse is now at around 0.3 picoseconds.

Explore further: Engineers develop new sensor to detect tiny individual nanoparticles

More information: Nino Čutić’s thesis is entitled Timing Diagnostics and Coherent Harmonics from a Test-FEL.

add to favorites email to friend print save as pdf

Related Stories

Physicists observe electron ejected from atom for first time

Oct 12, 2010

Physicists at the University of California, Berkeley in collaboration with researchers from the Max Planck Institute of Quantum Optics and the U.S. Department of Energy's Lawrence Berkeley National Laboratory, became the ...

Laser light in the deep infrared

Aug 23, 2006

Free-electron lasers (FEL) are large and expensive, but they can deliver unique light for research and applications. On August 21, 2006, at the Forschungszentrum Rossendorf (FZR) in Dresden, Germany, the second ...

Watching Electrons with Lasers

Nov 06, 2008

(PhysOrg.com) -- A team of researchers from the Stanford PULSE Institute for Ultrafast Energy Science at SLAC National Accelerator Laboratory has recently moved a step closer to visualizing the motions of ...

Recommended for you

New method for non-invasive prostate cancer screening

16 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

17 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

18 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

22 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0