Probing the secrets of the ryegrasses

Jun 20, 2011

Loline alkaloids protect plants from attack by insects and have other interesting features that have yet to be studied in detail. Chemists from Ludwig-Maximilians-Universitaet in Munich, Germany, have developed a method for the effective synthesis of these compounds, which will facilitate further investigations in biology and medicine.

Chemists from Ludwig-Maximilians-Universitaet in Munich led by Professor Dirk Trauner have developed a concise and efficient method for the synthesis of the alkaloid loline and related compounds. Loline alkaloids are a biologically interesting group of natural products, which have unusual physicochemical and pharmacological characteristics, but are as of yet poorly understood. They are produced by fungal symbionts that infect weeds and , and act as deterrents of insects and other herbivores. Some of the agents synthesized by endophytic fungi are toxic to , producing a syndrome known as the staggers.

Indeed, such toxic weeds (commonly called ryegrass or cockle) were much feared in antiquity and are mentioned both by Virgil and in the New Testament. Lolines however are comparatively innocuous to mammalian herbivores, and might therefore be of some therapeutic use. The loline alkaloid temuline has attracted particular attention in another context because it can strongly bind carbon dioxide. Lolines are relatively small molecules and have a fairly simple structure, but of the compounds has proven to be quite challenging.

"Our synthetic route is highly efficient and, with a maximum of 10 steps, very short," says Dirk Trauner, who led the project. "It will allow us to make these compounds in sufficient quantities to enable their various aspects to be investigated in detail. We should then be able to dissect the of interactions of the plants and their fungal parasites with insects and bacteria. We now plan to use our synthetic material to identify the receptor for loline ."

Explore further: Rooting out horse-meat fraud in the wake of a recent food scandal

Provided by Ludwig-Maximilians-Universitat Munchen

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Periwinkle can serve as tiny chemical plant

Nov 16, 2006

MIT researchers have discovered a way to manipulate the chemistry taking place in the tiny periwinkle plant to produce novel compounds that could have pharmacological benefits.

Chemists synthesize herbal alkaloid

Apr 15, 2009

The club moss Lycopodium serratum is a creeping, flowerless plant used in homeopathic medicine to treat a wide variety of ailments. It contains a potent brew of alkaloids that have attracted considerable scient ...

Chemists engineer plants to produce new compounds

Jan 19, 2009

(PhysOrg.com) -- In work that could expand the frontiers of genetic engineering, MIT chemists have, for the first time, genetically altered a plant to produce entirely new compounds, some of which could be ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0