NRL instrument provides key space weather data

Jun 22, 2011
This is an example scan from the SSULI instrument, x-axis represents wavelength, y-axis is altitude and the color represents accumulated counts in one orbit (101 minutes). Credit: Naval Research Laboratory

Data products from the Special Sensor Ultraviolet Limb Imager (SSULI) developed by the NRL Spacecraft Engineering Department and Space Science Division were officially transitioned for use in operational systems at the Air Force Weather Agency (AFWA) on June 9, 2011.

After extensive validation of the SSULI sensor software and derived atmospheric specification, the Air Force Weather Agency received a formal letter from the Defense Directorate (DWSD) at the Air Force Space and Missile Systems Center (SMC) recommending that they begin using the SSULI data as inputs into Space Weather models and also as standalone data products.

"These datasets now in use at the Air Force Weather Agency provide key understanding of the atmosphere for both Department of Defense and civilian users," said Sean Lynch, program manager, NRL Spacecraft Engineering Department.

SSULI measures vertical profiles of the natural airglow radiation from atoms, molecules, and ions in the upper atmosphere and ionosphere from aboard the DMSP satellite. It builds on the successes of the NRL High Resolution Airglow/Aurora Spectroscopy (HIRAAS) experiment flown aboard the Department of Defense (DoD) Space Test Program (STP) Advanced Research and Global Observations Satellite (ARGOS). SSULI makes measurements from the extreme ultraviolet (EUV) to the far ultraviolet (FUV) over the of 80 to 170 nanometers (nm) with a 1.8 nm resolution. SSULI also measures the electron density and neutral density profiles of the emitting atmospheric constituents.

SSULI uses a spectrograph with a mirror capable of scanning below the satellite horizon from 10 to 27 degrees every 90 seconds. These observations represent a vertical slice of the Earth's atmosphere from 750 to 50 kilometers (km) in depth. Use of these data enables the development of new techniques for global ionospheric remote sensing and new models of global variation.

"The SSULI team is very excited to see data from the mission transition into operations, the result of a large team of extremely dedicated NRL scientists and engineers," said Andrew Nicholas, SSULI principal investigator, NRL Space Science Division.

Explore further: New filter technology uses inert gas to bore holes in high-quality steel

add to favorites email to friend print save as pdf

Related Stories

NRL sensor provides critical space weather observations

Nov 03, 2009

Launched from Vandenberg Air Force Base, Calif., aboard an United Launch Alliance Atlas V launch vehicle, Oct. 18, 2009, the Special Sensor Ultraviolet Limb Imager (SSULI) developed by NRL's Space Science ...

NRL Sensor Observes First Light

Dec 02, 2009

The Special Sensor Ultraviolet Limb Imager (SSULI) developed by NRL's Spacecraft Engineering Department and Space Science Division, launched October 18, 2009 on the U.S. Air Force Defense Meteorological Satellite ...

Updated version of GAIM model goes operational

May 02, 2008

An updated version of the Global Assimilation of Ionospheric Measurements (GAIM) model went operational at the Air Force Weather Agency (AFWA) on February 22, 2008. The operational GAIM program has been under development ...

STPSat-1 successfully completes extended mission

Dec 02, 2009

The STPSat-1, built for the Department of Defense (DoD) Space Test Program (STP) and operated by the DoD STP for the first year then transitioned to NRL for the last 16 months, was decommissioned on October ...

Recommended for you

Augmented reality helps in industrial troubleshooting

19 hours ago

At a "smart" factory, machines reveal a number of data about themselves. Sensors measuring temperature, rotating speed or vibrations provide valuable information on the state of a machine. On this basis, ...

3D printed nose wins design award

Aug 27, 2014

A Victoria University of Wellington design student is the New Zealand finalist for the James Dyson Award 2014 for his Master's project—a 3D printed prosthetic nose.

User comments : 0