Nitrogen-fixing bacterial symbiont promises trove of natural products

Jun 17, 2011

Soil-dwelling bacteria of the genus Frankia have the potential to produce a multitude of natural products, including antibiotics, herbicides, pigments, anticancer agents, and other useful products, according to Bradley S. Moore of the Scripps Oceanographic Institute, La Jolla, and his collaborators in an article in the June 2011 issue of the journal Applied and Environmental Microbiology.

The researchers found genetic structures in this that resemble those of various valuable natural product categories through and genome mining. “This tremendous biosynthetic capacity is reminiscent of many industrially important bacteria such as those belonging to the , Streptomyces that produce the majority of the natural antibiotics used as drugs,” says Moore.
 
“To see this capacity in a well-known microbe not previously exploited for its chemical richness was very rewarding from both an applied and basic science point of view,” says Moore. Frankia are nitrogen-fixing bacteria that live in symbiosis with actinorhizal plants (whose ranks include beech and cherry trees, and various gourd-producing plants).  “Since the vast majority of the deduced [biosynthetic] pathways are unique to Frankia, it suggests that they employ a very complex and specialized communication with their plant host to establish and maintain their symbiosis. So lots to discover there.”
 
Frankia have not previously been exploited partly because these bacteria are difficult to grow in the lab. But new genetic methods make it easier to transplant genes for promising natural products from Frankia into “more user-friendly host bacteria for production,” says Moore.
 
Moreover, genome mining, a recent technique that involves searching for genetic sequences, was critical to the results, and “complementary to the far more laborious traditional natural product drug discovery that has gone unchanged for decades,” says Moore. A greater understanding of how complex organic molecules are synthesized in nature laid additional groundwork for this, and for “a new revolution in the discovery of natural chemicals that will fuel new research into what functions these chemicals play in nature, and how they can be used to benefit society,” says Moore.
 
The project grew out of a graduate class that Moore and Daniel Udwary (then his post-doc, now at the University of Rhode Island) taught on “Microbial Genome Mining,” says Moore. Each student in the class researched a group of biosynthetic gene clusters that Moore and Udwary preselected. The students—who are the majority of coauthors on the paper—annotated their genes and based on biosynthetic principles, and predicted pathways leading to putative natural products. They then worked with the laboratories of Pieter Dorrestein at the University of California, San Diego (a mass spec specialist) and Lou Tisa at the University of New Hampshire (a Frankia biologist) to conduct preliminary proteomic and metabolomic analyses to probe whether the predicted pathways were operative, and whether small molecule chemistry was evident.

Explore further: Illuminating the dark side of the genome

More information: D.W. Udwary, et al., 2011. Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses.” Appl. Environ. Microbiol. 77:3617-3625.

Provided by American Society for Microbiology

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

GM safety debate may have new twist

Oct 28, 2010

By studying plant-fungi-bacteria interactions at plant wound sites, the team have identified a natural process stimulated by a hormone released by the wounded plant that would allow synthetic genes to move ...

Potential treatments from cryptic genes

Jun 02, 2008

Big pharma gave up on soil bacteria as a source of antibiotics too soon, according to research published in the June issue of Microbiology. Scientists have been mining microbial genomes for new natural products that may ha ...

More evidence vitamin D boosts immune response

Jun 17, 2011

Laboratory-grown gingival cells treated with vitamin D boosted their production of an endogenous antibiotic, and killed more bacteria than untreated cells, according to a paper in the June 2011 issue of the journal Infection ...

New gene named after famous Scottish vet

Jun 17, 2011

Researchers at the University of St Andrews have discovered and named a new potentially cancer-controlling gene after a famous Scottish scientist.

Study details bacterial communication

Jan 26, 2011

(PhysOrg.com) -- If you think your family talks too loud at times, just consider what the noise level would be if you could hear what the bacteria around you are saying.

Recommended for you

Researchers uncover secrets of internal cell fine-tuning

11 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

Microscopic rowing—without a cox

12 hours ago

Many different types of cell, including sperm, bacteria and algae, propel themselves using whip-like appendages known as flagella. These protrusions, about one-hundredth of a millimetre long, function like ...

Illuminating the dark side of the genome

18 hours ago

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

User comments : 0