Nanoparticles disguised as red blood cells deliver cancer-fighting drugs

Jun 20, 2011

Researchers at the University of California, San Diego have developed a novel method of disguising nanoparticles as red blood cells, which will enable them to evade the body's immune system and deliver cancer-fighting drugs straight to a tumor. Their research will be published next week in the online Early Edition of the Proceedings of the National Academy of Sciences.

The method involves collecting the membrane from a red blood cell and wrapping it like a powerful camouflaging cloak around a nanoparticle stuffed with a cocktail of small . are less than 100 nanometers in size, about the same size as a virus.

"This is the first work that combines the natural cell membrane with a synthetic nanoparticle for applications." said Liangfang Zhang, a nanoeningeering professor at the UC San Diego Jacobs School of Engineering and Moores UCSD Cancer Center. "This nanoparticle platform will have little risk of immune response".

Researchers have been working for years on developing drug delivery systems that mimic the body's natural behavior for more effective drug delivery. That means creating vehicles such as nanoparticles that can live and circulate in the body for extended periods without being attacked by the immune system. live in the body for up to 180 days and, as such, are "nature's long-circulation delivery vehicle," said Zhang's student Che-Ming Hu, a UCSD Ph.D. candidate in bioengineering, and first author on the paper.

Stealth nanoparticles are already used successfully in clinical to deliver . They are coated in a synthetic material such as that creates a protection layer to suppress the immune system so that the nanoparticle has time to deliver its payload. Zhang said today's stealth nanoparticle drug delivery vehicles can circulate in the body for hours compared to the minutes a nanoparticle might survive without this special coating.

But in Zhang's study, nanoparticles coated in the membranes of red circulated in the bodies of lab mice for nearly two days. The study was funded through a grant from the National Institute of Health.

A shift towards personalized medicine

Using the body's own red blood cells marks a significant shift in focus and a major breakthrough in the field of personalized drug delivery research. Trying to mimic the most important properties of a red blood cell in a synthetic coating requires an in-depth biological understanding of how all the proteins and lipids function on the surface of a cell so that you know you are mimicking the right properties.
Instead, Zhang's team is just taking the whole surface membrane from an actual red blood cell.

"We approached this problem from an engineering point of view and bypassed all of this fundamental biology," said Zhang. "If the red blood cell has such a feature and we know that it has something to do with the membrane -- although we don't fully understand exactly what is going on at the protein level -- we just take the whole membrane. You put the cloak on the nanoparticle, and the nanoparticle looks like a red blood cell."

Using nanoparticles to deliver drugs also reduces the hours it takes to slowly drip chemotherapy drug solutions through an intravenous line to just a few minutes for a single injection of nanoparticle drugs. This significantly improves the patient's experience and compliance with the therapeutic plan. The breakthrough could lead to more personalized drug delivery wherein a small sample of a patient's own blood could produce enough of the essential membrane to disguise the nanoparticle, reducing the risk of immune response to almost nothing.

Zhang said one of the next steps is to develop an approach for large-scale manufacturing of these biomimetic nanoparticles for clinical use, which will be done through funding from the National Science Foundation. Researchers will also add a targeting molecule to the membrane that will enable the particle to seek and bind to cancer cells, and integrate the team's technology for loading drugs into the nanoparticle core so that multiple drugs can be delivered at the same time.

Zhang said being able to deliver multiple drugs in a single nanoparticle is important because cancer cells can develop a resistance to drugs delivered individually. By combining them, and giving the nanoparticle the ability to target cancer cells, the whole cocktail can be dropped like a bomb from within the cancer cell.

Explore further: Introducing the multi-tasking nanoparticle

Related Stories

Nano-Vehicle acts as cluster bomb for tumors

Sep 18, 2010

Chemotherapy, while an effective cancer treatment, also brings debilitating side effects such as nausea, liver toxicity, and a battered immune system. Now, a new way to deliver this life-saving therapy to cancer patients ...

Stealth particles to target tumors

Aug 31, 2005

Stealth nano particles may some day target tumor cells and deliver medication to specific body locations, according to Penn State chemical engineers.

Nanoparticles Overcome Anticancer Drug Resistance

Jun 12, 2006

Too often, chemotherapy fails to cure cancer because some tumor cells develop resistance to multiple anticancer drugs. In most cases, resistance develops when cancer cells begin expressing a protein, known as p-glycoprotein, ...

Polymer Nanoparticles Create Potential Anticancer Vaccine

Jan 29, 2007

Using a biodegradable nanoparticle as a means of delivering tumor cell debris and proteins to the immune system, investigators at Yale University have developed a promising new method for creating therapeutic anticancer vaccines. ...

New Nanoparticles for Targeting Tumors

Mar 27, 2008

As a wide variety of nanoparticles continue to demonstrate their ability to improve the delivery of imaging agents and drugs to tumors, nanoparticle researchers have turned their attention to the challenge of systematically ...

Recommended for you

Introducing the multi-tasking nanoparticle

13 hours ago

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Tissue regeneration using anti-inflammatory nanomolecules

Aug 22, 2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Cut flowers last longer with silver nanotechnology

Aug 21, 2014

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Relaxing DNA strands by using nano-channels

Aug 20, 2014

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

User comments : 0