Membrane pockets that gain catalytic activity upon self-assembly shed light on biological enzymatic processes

June 10, 2011
Figure 1: Schematic illustration showing the water-mediated catalysis of organic reactions within the self-assembled vesicle membrane. Credit: Reproduced in part, with permission, from Ref. 1 2011 Wiley-VCH

Biological membranes play key roles in the body. They determine, for example, how molecules enter and exit cells, and the architecture of their lipid bilayer allows them to host enzymes and enhance their catalytic performance under natural conditions. To clarify the mechanisms that govern these processes, a team of chemists in Japan has generated in water tiny, catalytically active, free-standing membrane pockets, called vesicles, using a self-assembly method based on a small palladium complex. The team was led by Yasuhiro Uozumi from the RIKEN Advanced Science Institute in Wako and the Institute for Molecular Science in Okazaki.

Many researchers have already used ultra-small self-assembled pockets to perform reactions in solution while protecting the from their potentially destructive surroundings. However, unlike Uozumi’s vesicles, few of these reaction vessels were ‘architecture-based’ catalysts; that is, structures that exhibit activity only when self-assembled. 

The team’s palladium complex is a rigid, planar, pincer-like structure with hydrophilic ‘arms’ and hydrophobic ‘legs’. The different affinity for water and orientation of these functional groups directs vesicle assembly in water. Furthermore, these properties allow the complex to gain unique catalytic activity for specific chemical reactions. “This, conceivably, would approach an artificial enzymatic system,” notes Uozumi.

“The vesicle, which bears a hydrophobic inner region, was self-constructed in water, and this inner region served as a reservoir for the substrate,” says Uozumi. He explains that the entire reaction system—including the medium, molecular structure of the palladium complex, and substrate—cooperatively governs a ‘self-concentration’ process. During this process, substrate penetrate the hydrophilic outer shell and accumulate in the hydrophobic reservoir where the reaction takes place (Fig. 1). After a quick catalytic transformation, the product exits the vesicle.

The researchers conducted a series of carbon–carbon bond-forming reactions, which are central to chemical synthesis, in the presence of the vesicles. They found that the vesicles stimulated the transformations in high yields at room temperature in water. The palladium complex was also recoverable in its original, disassembled form after the reaction. When they ran the same experiment in hydrophobic organic solvents, which hinder vesicle formation, no catalysis occurred—proof that water-mediated is crucial for the of the complex. 

The team is currently developing new catalysts by changing the hydrophilic and hydrophobic groups and substituting for other metal species. It is also applying these catalysts to other organic reactions. These water-enabled transformations will lead to greener and safer approaches to organic chemistry, Uozumi concludes.

Explore further: Water: the Solvent of Choice

More information: Hamasaka, G., et al. Molecular-architecture-based administration of catalysis in water: self-assembly of an amphiphilic palladium pincer complex. Angewandte Chemie, International Edition 50, 4876–4878 (2011).

Related Stories

Water: the Solvent of Choice

May 16, 2005

Miscibility not required: chemical reactions "on water" faster than in organic solvents We all know what it means to put something "on ice", but what is a chemical reaction "on water"? This new expression has been coined ...

Solving single molecule mobility

October 18, 2010

Nanotechnologists assemble intricate nanodevices, such as computer chips, molecule by molecule using ‘bottom-up’ techniques that mirror nature. One approach shuttles molecules along surfaces into new and functional ...

Greenhouse gas chemistry

November 30, 2010

If fossil fuels burn completely, the end products are carbon dioxide and water. Today the carbon dioxide is a waste product, one that goes into the air -- adding to global warming; or the oceans -- acidifying them; or underground ...

Putting a fuel cell 'in your pocket'

April 15, 2011

(PhysOrg.com) -- Technology using catalysts which make hydrogen from formic acid could eventually replace lithium batteries and power a host of mobile devices.

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

Bleach a possible key to life on earth

July 23, 2015

Hydrogen peroxide - commonly used as hair bleach - may have provided the energy source for the development of life on Earth, two applied mathematicians have found.

Acetic acid as a proton shuttle in gold chemistry

July 24, 2015

A recently published study gives a vivid example of unusual chemical reactivity associated with organogold complexes. Using modern physical methods and computational studies, the authors propose a reaction mechanism in which ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.