Magnetic properties of a single proton directly observed for the first time

Jun 21, 2011

German researchers at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM), together with their colleagues from the Max Planck Institute for Nuclear Physics in Heidelberg and the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, have observed spin quantum-jumps with a single trapped proton for the first time. The fact that they have managed to procure this elusive data means that they have overtaken their research competitors at the elite Harvard University and are now the global leaders in this field.

The result is a pioneering step forward in the endeavor to directly measure the magnetic properties of the with high precision. The measuring principle is based on the observation of a single proton stored in an electromagnetic particle trap. As it would also be possible to observe an anti-proton using the same method, the prospect that an explanation for the matter-antimatter imbalance in the universe could be found has become a reality. It is essential to be able to analyze antimatter in detail if we are to understand why matter and antimatter did not completely cancel each other out after the Big Bang - in other words, if we are to comprehend how the universe actually came into existence.

The proton has an intrinsic angular momentum or spin, just like other particles. It is like a tiny bar magnet; in this analogy, a spin quantum jump would correspond to a (switch) flip of the . However, detecting the proton spin is a major challenge. While the magnetic moments of the electron and its anti-particle, the positron, were already being measured and compared in the 1980s, this has yet to be achieved in the case of the proton. "We have long been aware of the of the proton, but it has thus far not been observed directly for a single proton but only in the case of particle ensembles," explains Stefan Ulmer, a member of the work group headed by Professor Dr Jochen Walz at the Institute of Physics at the new Helmholtz Institute Mainz.

The real problem is that the magnetic moment of the proton is 660 times smaller than that of the electron, which means that it is considerably harder to detect. It has taken the collaborative research team five years to prepare an experiment that would be precise enough to pass the crucial test. "At last we have successfully demonstrated the detection of the spin direction of a single trapped proton," says an exultant Ulmer, a stipendiary of the International Max Planck Research School for Quantum Dynamics in Heidelberg.

This opens the way for direct high-precision measurements of the magnetic moments of both the proton and the anti-proton. The latter is likely to be undertaken at CERN, the European laboratory for particle physics in Geneva, or at FLAIR/GSI in Darmstadt. The magnetic moment of the anti-proton is currently only known to three decimal places. The method used at the laboratories in Mainz aims at a millionfold improvement of the measuring accuracy and should represent a new highly sensitive test of the matter-antimatter symmetry. This first observation of the spin quantum jumps of a single proton is a crucial milestone in the pursuit of this aim.

Matter-antimatter symmetry is one of the pillars of the Standard Model of elementary particle physics. According to this model, particles and anti-particles should behave identically once inversions of charge, parity and time - referred to as CPT transformation – are applied simultaneously. High-precision comparisons of the fundamental properties of particles and anti-particles make it possible to accurately determine whether this symmetrical behavior actually occurs, and may provide the basis for theories that extend beyond the Standard Model. Assuming that a difference between the magnetic moments of protons and anti-protons could be detected, this would open up a window on this "new physics".

Explore further: MRI for a quantum simulation

More information: The results were published online in Physical Review Letters.

Provided by Johannes Gutenberg Universitaet Mainz

4.4 /5 (10 votes)

Related Stories

How does the proton get its spin?

Feb 17, 2010

(PhysOrg.com) -- At a meeting this week of the American Physical Society in Washington, MIT Associate Professor of Physics Bernd Surrow reported on new results from the STAR experiment at the Relativistic ...

New tool for proton spin

May 06, 2011

How the particles that constitute a proton give rise to is to its rotation, or ‘spin’, is an intriguing open question of contemporary particle physics. A technique that could provide some answers ...

Protons - Everything Revolves Around Spin

Dec 17, 2007

Current understanding of the spin structure of protons has been summarised in a single book for the first time. The book examines attempts to solve one of the greatest puzzles of physics. Models and experiments ...

Moving Quarks Help Solve Proton Spin Puzzle

Sep 11, 2008

(PhysOrg.com) -- New theory work at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility has shown that more than half of the spin of the proton is the result of the movement of its building blocks: ...

Recommended for you

Refocusing research into high-temperature superconductors

11 hours ago

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 °C – a temperature ...

MRI for a quantum simulation

17 hours ago

Magnetic resonance imaging (MRI), which is the medical application of nuclear magnetic resonance spectroscopy, is a powerful diagnostic tool. MRI works by resonantly exciting hydrogen atoms and measuring ...

50-foot-wide Muon g-2 electromagnet installed at Fermilab

17 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

CMAenergy
not rated yet Jun 22, 2011
Since when do they speak so loudly about a well known fact. Did they not know any magnetic energy field emanating from within does behave like that of a spring, The energy field of any magnet. Or sub particle field of study. Will result in this little known fact. Did one have to build and spend so much to prove this fact? Now where do they go?
Darkboy
not rated yet Jun 22, 2011
Since when do they speak so loudly about a well known fact. Did they not know any magnetic energy field emanating from within does behave like that of a spring, The energy field of any magnet. Or sub particle field of study. Will result in this little known fact. Did one have to build and spend so much to prove this fact? Now where do they go?


Umm, please re-phrase that comment, it is sintactically awful.

Also I find the article quite exciting. The implications of finding a difference between the proton and anti-proton, or not, could be huge. It could help explain the reason as to why there is practically zero anti-matter in the observable universe, or could point to the fact that there are anti-matter regions in the universe. So exciting!