Leftover embryonic cells connect gastric reflux and cancer

Jun 23, 2011

The ultimate source of some cancers is embryonic cells. Research published in the June 24th Cell, a Cell Press publication, traces the precursor of deadly esophageal cancers to leftover embryonic cells found in all adults.

Some people with gastric reflux disease have a greater risk of developing esophageal cancer. These patients often have Barrett's esophagus, a condition in which intestinal-like appear in the esophagus. Esophageal cancers are difficult to treat and, together with gastric adenocarcinomas, kill more than a million people each year.

"A lot of cancers you can do little about, and are approved based on their ability to extend life by one or two months," said the senior author of this study, Frank McKeon of Harvard Medical School and the Genome Institute of Singapore. "Focus on the precursors of cancer may be our best hope for medicine. Here, we are looking at a of a cancer precursor that is present in all of us."

"It's not clear that the embryonic stem cell precursors have any real purpose," says study author Wa Xian. "Methods to rid the body of those cells may therefore be the easiest and most cost-effective way to stop the disease before it even starts, particularly for those at the greatest risk."

The prevailing theory has been that the seen in Barrett's esophagus arise as the normal squamous "transcommit" in response to acid-reflux to a new, intestine-like fate. Using a of chronic acid-reflux disease, , Xian and McKeon now show that, even as embryos, the animals showed a vast expanse of intestine-like cells in their esophaguses with gene expression profiles very similar to those seen in Barrett's.

"The metaplasia developed very quickly, in a matter of days," Xian said. "This was shocking to us as we generally consider cancer precursors taking multiple genetic 'hits' and years to develop."

The speedy development suggested that the wasn't related to the slow accumulation of mutations. Their findings also argue against the idea that the normal stem cells were undergoing a change of fate.

The mice under study lack a gene called p63 that is required for the self-renewal of stem cells in all stratified epithelial tissues. Because of their genetic defect, the mice are born without the squamous epithelium that normally lines the esophagus. "Without p63, the stem cells run out of gas and cease to exist," McKeon said. "You can't transcommit a cell that isn't there."

The gene profiles of those cells were also very different from cells of the , despite their intestine-like appearance. "It's not a transcommitment," Xian said. "The Barrett's structure has its own cellular origin."

The researchers also generated mouse models in which the esophageal tissue could be damaged at precise times, revealing that this damage triggers a rapid mobilization of that would otherwise be resting. Those cells take up the newly freed space in a process that might mimic the evolution of Barrett's. Again, the speed with which those cells were activated seemed to rule out mutations as an explanation in favor of competition between normal cells and the minority embryonic population.

"The dim prognosis for esophageal adenocarcinoma has driven therapeutic strategies aimed at destroying Barrett's esophagus, including Radio Frequency Ablation (RFA), before it progresses to aggressive cancer," McKeon said. "While RFA appears to be exceedingly effective in the short term, there are hints that Barrett's might be fairly resilient and poised for recurrence."

The new findings suggest it may be more effective to go after the precursor cells instead. To do that, Xian says they "will have to clone the stem cell for Barrett's and the Barrett's precursor cell in the junction to find the targets needed to eradicate them."

In a final note, McKeon and Xian say that they suspect an additional subset of cancers, especially those linked to inflammation and tissue damage, might arise from precursors derived in a manner similar to Barrett's. "If so, we anticipate rapid progress into a group of particularly aggressive cancers that typically outwit the best treatments we have."

Explore further: Students create microbe to weaken superbug

add to favorites email to friend print save as pdf

Related Stories

Researchers Shed Light on Esophageal Disease

Jun 08, 2009

(PhysOrg.com) -- Canadian Light Source (CLS) staff scientist Luca Quaroni and Dr. Alan Casson from the University of Saskatchewan used the synchrotron's infrared microscope to identify tissue afflicted with ...

Recommended for you

Students create microbe to weaken superbug

7 hours ago

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

Body size requires hormones under control

15 hours ago

The proper regulation of body size is of fundamental importance, but the mechanisms that stop growth are still unclear. In a study now published in the scientific journal eLife, a research group from Instit ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.