A lack of structure facilitates protein synthesis

Jun 28, 2011
This is the mechanism for the recognition of an AUG start codon by the ribosome (blue) in the absence of a Shine-Dalgarno sequence. The correct AUG start codon (green) differs from all other AUG triplets (red) through its position in a single-strand (unstructured) region of the messenger RNA (black). Credit: MPI of Molecular Plant Physiology

Having an easily accessible starting point on messenger RNA increases protein formation, scientists from the Max Planck Institute of Molecular Plant Physiology in Potsdam have discovered.

Texts without spaces are not very legible, as they make it very difficult for the reader to identify where a word begins and where it ends. When in our cells is read and translated into proteins, the enzymes responsible for this task face a similar challenge. They must find the correct starting point for . Therefore, in organisms with no real nucleus, a point exists shortly before the start codon, to which the enzymes can bind particularly well. This helps them find the starting point itself. However, genes that do not have this sequence are also reliably translated into proteins. Scientists from the Max Planck Institute of Molecular Plant Physiology in Potsdam have discovered that the structure of the messenger RNA probably plays a crucial role in this process.

The DNA of all organisms consists of the four bases adenine, cytosine, and guanine, which are abbreviated using the letters A, C, T and G. In RNA, thymine is replaced by uracil (U). The bases are connected with each other by their sugar-phosphate backbone. They are comparable to the letters in our alphabet, which can be put together to form words. In the language of DNA, groups of three bases, known as triplets, code for the 20 amino acids, from which all proteins are made. Because there are no empty spaces between the triplets in the DNA, it is difficult to recognise the three bases that belong to one triplet and, particularly, to identify the starting point for protein synthesis on the nucleic acid strand.

Before proteins can be manufactured, the DNA is transcribed into its transport form, the (mRNA), and introduced into the cell plasma. Small , the ribosomes, bind to the mRNA here and commence with their work. They "read" the series of bases and translate them into amino acids. They begin this task neither directly at the beginning of the mRNA nor at a random point, but always at an AUG base triplet, the start codon. This triplet codes for the amino acid methionine which thus constitutes the first amino acid in every protein. However, methionine can also appear at other locations in the protein. Therefore, the question arises as to how the ribosomes know whether an AUG codon is a start signal or not.

To this effect, the Shine-Dalgarno sequence (SD sequence) usually comes to the aid of prokaryotes, unicellular organisms without a true nucleus. The SD sequence is an mRNA base sequence that has remained virtually unchanged over the course of evolution and is found near the start codon. The ribosomes have an anti-Shine-Dalgarno sequence that can form a strong bond with the SD sequence. If a ribosome wanders along the mRNA in search of the start codon, it is detained by the SD sequence and consequently recognises the correct starting point for protein synthesis. However, mRNAs exist that do not have a Shine-Dalgarno sequence; their ribosomes nevertheless succeed in tracking down the correct AUG triplet. The mechanism that enables the correct identification of the start signal has been completely unclear until now.

According to the latest findings, the structure – or to be more precise the lack of structure – of the mRNA appears to be the factor at play here. Lars Scharff and Liam Childs from the Max Planck Institute of Molecular Plant Physiology in Potsdam examined tens of thousands of genes from different prokaryotes and cell organelles for the presence of a Shine-Dalgarno sequence. They discovered that, depending on the organism, between 15 and 50 percent of all genes do not have an SD sequence. The fact that the ribosomes also recognise the start codon on these mRNAs is probably because it is particularly easy to access. The mRNA is not usually present as a long thread but forms loops and hairpin structures. However, a ribosome can only bind to unstructured areas of the mRNA and this, it would appear, is where the secret lies: "Unlike in genes with a Shine-Dalgarno sequence, the mRNA around the start codon in genes with no Shine-Delgarno sequence has hardly any folded structures," Scharff explains.

In an experiment, the researchers introduced mutations to destroy the SD sequence, and the rate at which the mRNA was translated into proteins declined drastically. "As soon as we inserted a second mutation that simultaneously unfolded the structure of the mRNA at the start codon, this effect was reduced and protein building increased again," explains Childs. Despite the missing SD sequence, the AUG codon is identified by the ribosome, as it is easier to access and not concealed in loops and convolutions.

Based on structural analyses of mRNAs, these results will facilitate the prediction of synthesis rates in future. In addition, it may become possible to influence the amount of proteins formed by modifying the structure in one direction or another.

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: Lars B. Scharff, Liam Childs, Dirk Walther, Ralph Bock, Local Absence of Secondary Structure Permits Translation of mRNAs that Lack Ribosome-binding Sites, PLoS Genet 7(6): e1002155, doi:10.1371/journal.pgen.1002155

Related Stories

Model suggests how life's code emerged from primordial soup

Aug 07, 2009

(PhysOrg.com) -- In 1953, Stanley Miller filled two flasks with chemicals assumed to be present on the primitive Earth, connected the flasks with rubber tubes and introduced some electrical sparks as a stand-in for lightning. ...

Hairpins for switches

Dec 12, 2006

How does an organism know when it must produce a protein and in what amount? Clever control mechanisms are responsible for the regulation of protein biosynthesis. One such type of mechanism, discovered only a few years ago, ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.