New inorganic semiconductor layers hold promise for solar energy

Jun 02, 2011 By Louise Lerner
New inorganic semiconductor layers hold promise for solar energy
Inorganic surface ligands enable facile electron transport between quantum dots and opened novel opportunities for using nanostructures in solar cells.

(PhysOrg.com) -- A team of researchers from the University of Chicago and the U.S. Department of Energy's (DOE) Argonne National Laboratory has demonstrated a method that could produce cheaper semiconductor layers for solar cells.

The inorganic nanocrystal arrays, created by spraying a new type of colloidal "ink", have excellent electron mobility and could be a step towards addressing fundamental problems with current solar technology.

"With today's , if you want to get significant amounts of electricity, you'd have to build huge installations over many square miles," said team leader Dmitri Talapin, who holds a joint appointment with Argonne and the university. But because current solar cells are based on silicon, which is costly and environmentally unfriendly to manufacture, they aren't cost-effective over large areas. The challenge for scientists is to find a way to manufacture large numbers of solar cells that are both efficient and cheap.

One possibility to make solar cells more economically would be to "print" them, similar to how newspapers are printed. "You'd use a kind of 'ink,' stamped on using a roll technology with a flexible substrate," Talapin said.

Solar cells have several layers of different materials stacked on top of each other. The team focused on the most important layer, which captures sunlight and converts it into electricity. This layer, made of a , must be able to transform light into negative and positive electrical charges but also easily release them to move further along the material to generate electrical current.

New inorganic semiconductor layers hold promise for solar energy
Arrays of quantum dots allow fabrication of solar cells by printing and other inexpensive techniques.

Many methods to grow the semiconductors need , but a cheaper approach would be to make them in solution. This, however, requires a precursor that is soluble.

The team developed that using . Small grains of semiconductors, suspended in a liquid, are "glued" together with new molecules called "molecular metal chalcogenide complexes." The process heats the material to about 200 degrees Celsius, much lower than the temperatures required for manufacturing silicon solar cells. The result is a layer of material with good semiconducting properties.

"The electron mobility for this material is an order of magnitude higher than previously reported for any solution-based method," Talapin said.

The team used intense X-rays from the DOE Office of Science's Advanced Photon Source at Argonne to watch as the semiconductor film was created.

"We believe that we could make very competitive with these nanoparticles," Talapin said.

Talapin said the success played on the complementary partnership between the University of Chicago and Argonne's Center for Nanoscale Materials. "At the university we have great students and postdocs who can do a lot of the theoretical chemistry, which requires a lot of manpower," Talapin said, "but Argonne is a fantastic place to do research that requires sophisticated instrumentation and infrastructure."

The paper, "Band-like transport, high and high photoconductivity in all-inorganic nanocrystal arrays", was published in Nature Nanotechnology.

Explore further: Scientists fabricate defect-free graphene, set record reversible capacity for Co3O4 anode in Li-ion batteries

Related Stories

Substantial improvement in essential cheap solar cell process

Mar 20, 2008

A cheap alternative to silicon solar cells can be found in dye-sensitised solar cells. This type of cell imitates the natural conversion of sunlight into energy by, for instance, plants and light-sensitive bacteria. Annemarie ...

Recommended for you

Copper shines as flexible conductor

Aug 22, 2014

Bend them, stretch them, twist them, fold them: modern materials that are light, flexible and highly conductive have extraordinary technological potential, whether as artificial skin or electronic paper.

Nanoparticles may aid oil recovery, frack fluid tracking

Aug 22, 2014

Two Colorado State University researchers are examining how nanoparticles move underground, knowledge that could eventually help improve recovery in oil fields and discover where hydraulic fracking chemicals ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

SiBorg
not rated yet Jun 03, 2011
Electron mobility is a all very well and good but how well is matched is the band gap to the spectra?