New imaging tech promising for diagnosing cardiovascular disease, diabetes

Jun 09, 2011 by Emil Venere
Researchers have developed a new type of imaging technology to diagnose cardiovascular disease and other disorders by measuring ultrasound signals from chemical bonds in molecules exposed to a pulsing laser. This "vibrational photoacoustic" image shows plaque in an arterial wall. Credit: Purdue University Weldon School of Biomedical Engineering image/Han-Wei Wang and Ji-Xin Cheng

Researchers have developed a new type of imaging technology to diagnose cardiovascular disease and other disorders by measuring ultrasound signals from molecules exposed to a fast-pulsing laser.

The new method could be used to take precise of plaques lining arteries, said Ji-Xin Cheng, an associate professor of biomedical engineering and chemistry at Purdue University.

Other imaging methods that provide molecular information are unable to penetrate tissue deep enough to reveal the three-dimensional structure of the plaques, but being able to do so would make better diagnoses possible, he said.

"You would have to cut a cross section of an artery to really see the three-dimensional structure of the plaque," Cheng said. "Obviously, that can't be used for living patients."

The imaging reveals the presence of carbon-hydrogen bonds making up in arterial plaques that cause heart disease. The method also might be used to detect fat molecules in muscles to diagnose diabetes and for other lipid-related disorders, including neurological conditions and . The technique also reveals nitrogen-hydrogen bonds making up proteins, meaning the imaging tool also might be useful for diagnosing other diseases and to study collagen's role in scar formation.

"Being able to key on specific chemical bonds is expected to open a completely new direction for the field," Cheng said

Findings are detailed in a paper to be published in and expected to appear in the June 17 issue. The findings represent the culmination of four years of research led by Cheng and doctoral student Han-Wei Wang.

The new technique uses nanosecond in the near-infrared range of the spectrum. The laser generates molecular "overtone" vibrations, or wavelengths that are not absorbed by the blood. The pulsed laser causes tissue to heat and expand locally, generating pressure waves at the ultrasound frequency that can be picked up with a device called a transducer.

"We are working to miniaturize the system so that we can build an endoscope to put into blood vessels using a catheter," Cheng said. "This would enable us to see the exact nature of plaque formation in the walls of arteries to better quantify and diagnose cardiovascular disease."

Lihong Wang, Gene K. Beare Distinguished Professor of Biomedical Engineering at Washington University in St. Louis, is a pioneer of using the "photoacoustic" imaging of blood vessels based on the absorption of light by the electrons in hemoglobin.

The Purdue researchers are the first to show that a strong photoacoustic signal can arise from the absorption of light by the in molecules. The near-infrared laser causes enough heating to generate ultrasound but not enough to damage tissue.

"You can measure the time delay between the laser and the ultrasound waves, and this gives you a precise distance, which enables you to image layers of the tissues for three-dimensional pictures," Cheng said. "You do one scan and get all the cross sections. Our initial target is cardiovascular disease, but there are other potential applications, including diabetes and ."

The approach represents a major improvement over another imaging technique, called coherent anti-Stokes Raman scattering, or CARS, which has been used by the Purdue-based lab to study three-dimensional plaque formation in arteries.

Also leading the research are Michael Sturek, chair of the Department of Cellular and Integrative Physiology at the Indiana University School of Medicine; Robert P. Lucht, Purdue's Ralph and Bettye Bailey Professor of Combustion in Mechanical Engineering; and David Umulis, a Purdue assistant professor of agricultural and biological engineering. Other authors of the paper include Purdue graduate students Ning Chai, Pu Wang and Wei Dou and Washington University postdoctoral researcher Song Hu.

Findings are based on research with pig tissues in laboratory samples and also with live fruit flies.

"You can see fat inside fly larvae, representing the potential to study how obesity affects physiology in humans," Cheng said.

Explore further: The hemihelix: Scientists discover a new shape using rubber bands (w/ video)

More information: Label-free Bond-selective Imaging by Listening to Vibrationally Excited Molecules

ABSTRACT
We report the realization of vibrational photoacoustic (VPA) microscopy using optical excitation of molecular overtone vibration and acoustic detection of the resultant pressure transients. Our approach eliminates the tissue scattering problem encountered in near-infrared spectroscopy and enables depth-resolved signal collection. The second overtone of the CH bond stretch around 8300 cm-1, where blood interference is minimal, is excited. We demonstrate 3-D VPA imaging of lipid-rich atherosclerotic plaques by excitation from the artery lumen, and lipid storage in live Drosophila larvae, with mm-scale penetration depth.

Related Stories

Gold nanorods brighten future for medical imaging

Oct 25, 2005

Researchers at Purdue University have taken a step toward developing a new type of ultra-sensitive medical imaging technique that works by shining a laser through the skin to detect tiny gold nanorods injected ...

'Cars' imaging reveals clues to myelin damage

Jun 27, 2007

Researchers have discovered that calcium ions could play a crucial role in multiple sclerosis by activating enzymes that degrade the fatty sheath that insulates nerve fibers.

Recommended for you

Using antineutrinos to monitor nuclear reactors

10 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Imaging turns a corner

14 hours ago

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Mapping the road to quantum gravity

Apr 23, 2014

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.