Researchers image graphene electron clouds, revealing how folds can harm conductivity

June 28, 2011
The red regions depict folds in graphene, whereas the green regions are relatively flat domains. The "hills and valleys" present in the electron cloud can act as speed bumps preventing the flow of charge through graphene. Ideally, for high-performance electronics, one would like a midwestern topography: completely flat, which would appear all green. Credit: Brian J. Schultz and Christopher J. Patridge, University at Buffalo

A research team led by University at Buffalo chemists has used synchrotron light sources to observe the electron clouds on the surface of graphene, producing a series of images that reveal how folds and ripples in the remarkable material can harm its conductivity.

The research, scheduled to appear June 28 in Nature Communications, was conducted by UB, the National Institute of Standards and Technology (NIST), the Molecular Foundry at Lawrence Berkeley National Laboratory (Berkeley Lab), and SEMATECH, a global consortium of .

Graphene, the thinnest and strongest material known to man, consists of a single layer of linked in a honeycomb-like arrangement.

Graphene's special structure makes it incredibly conductive: Under ideal circumstances, when graphene is completely flat, speed through it without encountering many obstacles, said Sarbajit Banerjee, one of the UB researchers who led the study in Nature Communications.

But conditions are not always optimal.

The new images that Banerjee and his colleagues captured show that when graphene is folded or bent, the lining its surface also becomes warped, making it more difficult for an electric charge to travel through.

"When graphene is flat, things just kind of coast along the cloud. They don't have to hop across anything. It's like a superhighway," said Banerjee, an assistant professor of chemistry. "But if you bend it, now there are some obstacles; imagine the difference between a freshly paved highway and one with construction work along the length forcing lane changes.

"When we imaged the electron cloud, you can imagine this big fluffy pillow, and we saw that the pillow is bent here and there," said Banerjee, whose National Science Foundation CAREER award provided the primary funding for the project.

To create the images and understand the factors perturbing the electron cloud, Banerjee and his partners employed two techniques that required use of a synchrotron: scanning transmission X-ray microscopy and near edge X-ray absorption fine structure (NEXAFS), a type of absorption spectroscopy. The experiments were further supported by computer simulations performed on computing clusters at Berkeley Lab.

Dotted lines show distinctive regions of graphene that are sloped at different angles. Soft X-rays paint a bird's-eye view of the electron cloud of graphene. Credit: Brian J. Schultz, University at Buffalo

"Using simulations, we can better understand the measurements our colleagues made using X-rays, and better predict how subtle changes in the structure of graphene affect its electronic properties," said David Prendergast, a staff scientist in the Theory of Nanostructures Facility at the Molecular Foundry at Berkeley Lab. "We saw that regions of graphene were sloped at different angles, like looking down onto the slanted roofs of many houses packed close together."

Besides documenting how folds in graphene distort its electron cloud, the research team discovered that contaminants that cling to graphene during processing linger in valleys where the material is uneven. Such contaminants uniquely distort the electron cloud, changing the strength with which the cloud is bound to the underlying atoms.

Graphene's unusual properties have generated excitement in industries including computing, energy and defense. Scientists say that graphene's electrical conductivity matches that of copper, and that graphene's thermal conductivity is the best of any known material.

But the new, UB-led study suggests that companies hoping to incorporate graphene into products such as conductive inks, ultrafast transistors and solar panels could benefit from more basic research on the nanomaterial. Improved processes for transferring flat sheets of graphene onto commercial products could greatly increase those products' efficiency.

"A lot of people know how to grow graphene, but it's not well understood how to transfer it onto something without it folding onto itself," Banerjee said. "It's very hard to keep straight and flat, and our work is really bringing home the point of why that's so important."

"Graphene is going to be very important in electronics," said PhD candidate Brian Schultz, one of three UB graduate students who were lead authors on the Nature Communications paper. "It's going to be one of the most conductive materials ever found, and it has the capability to be used as an ultrahigh-frequency transistor or as a possible replacement for silicon chips, the backbone of current commercial electronics.

"When was discovered, people were just so excited that it was such a good material that people really wanted to go with it and run as fast as possible," Schultz continued. "But what we're showing is that you really have to do some fundamental research before you understand how to process it and how to get it into electronics."

Explore further: Light-speed nanotech: Controlling the nature of graphene

Related Stories

Light-speed nanotech: Controlling the nature of graphene

January 21, 2009

Researchers at Rensselaer Polytechnic Institute have discovered a new method for controlling the nature of graphene, bringing academia and industry potentially one step closer to realizing the mass production of graphene-based ...

Turning down the noise in graphene

August 6, 2010

( -- Graphene is a two-dimensional crystalline sheet of carbon atoms - meaning it is only one atom thick - through which electrons can race at nearly the speed of light - 100 times faster than they can move through ...

Scientists explain graphene mystery

August 23, 2010

Nanoscale simulations and theoretical research performed at the Department of Energy's Oak Ridge National Laboratory are bringing scientists closer to realizing graphene's potential in electronic applications.

Ultrafast imaging of electron waves in graphene (w/ Video)

November 10, 2010

The fastest "movies" ever made of electron motion have been captured by researchers using the U.S. Department of Energy’s Advanced Photon Source (APS) at Argonne and the Frederick Seitz Materials Research Laboratory ...

Shining light on graphene sensors

January 10, 2011

National Physical Laboratory, together with an international team of scientists, have published research showing how light can be used to control graphene's electrical properties. This advance is an important step towards ...

Two graphene layers may be better than one

April 27, 2011

( -- Researchers at the National Institute of Standards and Technology have shown that the electronic properties of two layers of graphene vary on the nanometer scale. The surprising new results reveal that not ...

Recommended for you

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.