New test puts the squeeze on horseshoe crabs

Jun 30, 2011 By Peter Gwynne
The shell of a juvenile horseshoe crab next to a bottle of limulus amoebocyte lysate, the gel obtained from horseshoe crab blood and used in medical testing. Credit: NOAA

If new technology under development proves out, horseshoe crabs will have to undergo fewer blood donations.

Horseshoe crabs routinely give up their blood to ensure human safety. Scientists use small amounts of the blood, which is colored blue, to test medicinal drugs and other items for the presence of endotoxins. These poisons associated with bacteria can harm human health.

A team at the University of Wisconsin-Madison, headed by engineering professor Nicholas Abbott, has discovered a new means of testing for endotoxins that involves inanimate compounds.

The requires manufacturers to test every drug and medical device that it certifies for the presence of endotoxins. Called the limulus amoebocyte lysate assay, this "gold standard of testing" relies on exposing the drug under investigation to horseshoe crabs' blood. The when endotoxins are present.

"An enzyme of the horseshoe crab is activated in the presence of the endotoxin," explained Peter Armstrong, a biology professor and horseshoe crab expert at the University of California, Davis. "That activates another enzyme which activates a third which causes the blood clot."

The blood extraction process is relatively benign.

"We insert a large syringe into the crab's heart and take about one third or one quarter of the total blood out of the animal," Armstrong said. "The vast majority of the crabs survive it."

Despite the success of the lysate assay, scientific teams have explored alternative approaches to testing for endotoxins. Most of the methods to date have used biotechnology techniques to create substitutes for the horseshoe crabs' blood.

"But they haven't got very far," Armstrong said.

Abbott's method works differently. It relies on liquid crystals.

Familiar in flat-screen televisions and computer monitors, these forms of matter combine the mobility of typical liquids and the ordered structure of conventional solids. Changes in their structure alter their optical properties, giving them different appearances under a microscope.

"We've had an interest in the notion that one can use the properties inherent in liquid crystals as amplifiers," Abbott said. "More recently we've had idea of using droplets of liquid crystals. When you confine a liquid crystal in a droplet you predispose it to responding to external stimuli."

Abbott thought that the geometry of droplets might give them a high sensitivity to lipids, the key components of endotoxins. Initial research showed that the endotoxins' lipids did indeed alter the appearance of liquid crystal droplets under a microscope.

"The organization of the liquid crystal inside the droplet changes. That changes the way the droplet scatters light," Abbott said."

In addition, Abbott's team reported in Science that "[W]e were surprised to find that we could decrease the concentration of the to extremely low levels and still see that change in the ordering of the liquid crystals."

But what causes the change?

The team first thought that the surfaces of the droplets adsorbed the endotoxins, but the process was too sensitive to justify that explanation. So Abbott and graduate students I-Hsin Lin and Dan Miller determined that the endotoxins located themselves on minuscule structural defects that exist naturally in droplets.

However it works, the approach has a specific advantage over limulus amoebocyte lysate and similar tests: It does not require living organisms.

"The (limulus amoebocyte lysate) test is very useful and FDA-approved, but it is a biologically derived assay, so you have all the complexities associated with seasonal variations and other factors," Abbott said. "Our approach is a demonstration of principle. But it doesn't require any biological reagent, it doesn't need to be refrigerated, and it could be fairly cheap and robust."

Abbott emphasized that his team's technology remains in a preliminary stage.

"We have found a fundamental phenomenon," he said. "But it's a long path to have a validated technology that can replace the assay."

So for now, horseshoe crabs will continue to donate their blood to the cause of human safety. 

Explore further: How to prevent organic food fraud

More information: Science 10 June 2011: Vol. 332 no. 6035 pp. 1297-1300. DOI: 10.1126/science.1195639

Provided by Inside Science News Service

5 /5 (1 vote)

Related Stories

Climate change affects horseshoe crab numbers

Oct 04, 2010

Having survived for more than 400 million years, the horseshoe crab is now under threat – primarily due to overharvest and habitat destruction. However, climatic changes may also play a role. Researchers ...

Regulators allow horseshoe crab harvest

Feb 12, 2008

The New Jersey Marine Fisheries Council has declined to extend a moratorium on horseshoe crab harvesting aimed at protecting migrating shore birds.

Red knot birds threatened by crab decline

Feb 21, 2006

Virginia Tech and New Jersey scientists say a reduction in the number of red knot shorebirds is linked with a decline in Delaware Bay's horseshoe crabs.

Recommended for you

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Protein glue shows potential for use with biomaterials

Aug 28, 2014

Researchers at the University of Milan in Italy have shown that a synthetic protein called AGMA1 has the potential to promote the adhesion of brain cells in a laboratory setting. This could prove helpful ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Cave_Man
not rated yet Jun 30, 2011
The blood extraction process is relatively benign.
"We insert a large syringe into the crab's heart and take about one third or one quarter of the total blood out of the animal," Armstrong said. "The vast majority of the crabs survive it."

Yeah it sounds like a walk in the park, hell we might have just discovered a new recreational activity for the very young and very old.............