Gold nanoparticles help earlier diagnosis of liver cancer

June 22, 2011
A new diagnostic technique can spot tumor-like masses as small as 5 millimeters in the liver. Gold nanoparticles with a polyelectrolyte coating can make smaller tumors more visible through X-ray scatter imaging, enabling earlier diagnosis. Credit: Rose-Petruck lab, Brown University

Hepatocellular carcinoma is the most common cancer to strike the liver. More than 500,000 people worldwide, concentrated in sub-Saharan Africa and Southeast Asia, are diagnosed with it yearly. Most of those afflicted die within six months.

A big obstacle to treatment of is the lack of early diagnosis. Current techniques, including ultrasound, CT and MRI scans, spot tumors only when they have grown to about 5 centimeters in diameter. By that time, the cancer is especially aggressive, resisting chemotherapy and difficult to remove surgically.

Now a research team led by Brown University reports some promising results for earlier diagnosis. In lab tests, the team used gold ringed by a charged and an X-ray scatter imaging technique to spot tumor-like masses as small as 5 millimeters. The approach, detailed in the American Chemical Society journal , marks the first time that have been used as agents to enhance X-ray scattering signals to image tumor-like masses.

"What we're doing is not a ," said Christoph Rose-Petruck, professor of chemistry at Brown University and corresponding author on the paper. "But in a routine exam, with people who have risk factors, such as certain types of hepatitis, we can use this technique to see a tumor that is just a few millimeters in diameter, which, in terms of size, is a factor of 10 smaller."

The team took gold nanoparticles of 10 and 50 in diameter and ringed them with a pair of 1-nanometer polyelectrolyte coatings. The coating gave the nanoparticles a charge, which increased the chances that they would be engulfed by the . Once engulfed, the team used X-ray scatter imaging to detect the gold nanoparticles within the . In lab tests, the nontoxic gold nanoparticles made up just 0.0006 percent of the cell's volume, yet the nanoparticles had enough critical mass to be detected by the X-ray scatter imaging device.

"We have shown that even with these small numbers, we can distinguish these [tumor] cells," Rose-Petruck said.

The next step for the researchers is on the clinical side. Beginning this summer, the group will attach a cancer-targeting antibody to the nanoparticle vehicle to search for liver tumors in mice. The antibody that will be used was developed by Jack Wands, director of the Liver Research Center at Rhode Island Hospital and professor of medical science at the Warren Alpert Medical School of Brown University.

"We have developed a monoclonal antibody that targets a cell surface protein highly expressed on liver cancer cells," Wands said. "We plan to couple the antibody to the gold nanoparticles in an attempt to detect the growth of early tumors in the liver by X-ray imaging."

The researchers say the X-ray scatter imaging method could be used to detect nanoparticle assemblies in other organs. "The idea should be that if you can figure out to get that [nanoparticle] to specific sites in the body, you can figure out how to image it," said Danielle Rand, a second-year graduate student in chemistry and the first author on the paper.

Explore further: Natural Gum Improves Gold Nanoparticles for Cancer Imaging

Related Stories

Natural Gum Improves Gold Nanoparticles for Cancer Imaging

February 12, 2007

Gold nanoparticles have shown significant promise as agents to detect and treat cancer, but researchers have had difficulty creating gold nanoparticles that have suitable pharmacological properties for use in humans. A team ...

Self-Assembling Nanoparticles Image Tumor Cells

July 23, 2007

By taking advantage of the full range of ways in which molecules can interact with and bind to one another, a team of investigators at the Carolina Center of Cancer Nanotechnology Excellence has created nanoparticles that ...

Potential for New Nanoparticle-Based Cancer Detection

May 25, 2010

(PhysOrg.com) -- Recent studies support the idea that the standard methods of screening men for prostate cancer leave much to be desired, particularly in terms of their inability to have much effect on prostate cancer survival.

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.