Gatekeepers: Study discovers how microbes make it past tight spaces between cells

Jun 16, 2011
Staph (red) bacteria invading epithelial cells of mouse respiratory system (blue and green). Credit: Aoife Roche, PhD, Perelman School of Medicine, University of Pennsylvania

There are ten microbial cells for every one human cell in the body, and microbiology dogma holds that there is a tight barrier protecting the inside of the body from outside invaders, in this case bacteria. Bacterial pathogens can break this barrier to cause infection and senior author Jeffrey Weiser, MD, professor of Microbiology and Pediatrics from the Perelman School of Medicine at the University of Pennsylvania, and first author Thomas Clarke, PhD, a postdoctoral fellow in the Weiser lab, wondered how microbes get inside the host and circulate in the first place. Weiser and Clarke tested to see if microbes somehow weaken host cell defenses to enter tissues.

In this Cell Host & Microbe study, the investigators found that open and get through the initial cellular barrier -- epithelial cells that line the airway -- in a programmed and efficient way. They surmise this could be a normal physiological event and the epithelial lining may not be as effective at keeping microbes out as once thought. Microbes that survive once past the epithelial lining tend to be pathogenic, such as Streptococcus pneumoniae and Haemophilus influenzae, two major human pathogens causing invasive infections. Their data support a general mechanism for epithelial opening exploited by invasive pathogens to facilitate movement into tissue to initiate disease.

Using microarray and PCR analysis of the epithelial cells' response to invasion by S. pneumoniae and H. influenzae, the researchers found a downregulation of genes called claudins that encode proteins key to keeping the spaces between epithelial cells tight. All animals recognize molecules in microbial cell walls. It was detection of these microbial molecules by host molecules called Toll-like receptors that caused the proteins responsible for keeping the cellular barrier tight to fall down on the job.

When modeled in a cell assay, claudin downregulation was preceded by upregulation of another protein called SNAIL1 that suppresses claudins, the cellular components that keep the junctions tight. What's more, inhibiting claudin expression in a cell assay or stimulating the Toll-like receptors in an animal model loosened the junctions between cells and promoted bacterial movement across the epithelium.

"This study provides an understanding of how microbes gain access into their host to affect its physiology," concludes Weiser.

Explore further: Malaria transmission linked to mosquitoes' sexual biology

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Malaria transmission linked to mosquitoes' sexual biology

20 hours ago

Sexual biology may be the key to uncovering why Anopheles mosquitoes are unique in their ability to transmit malaria to humans, according to researchers at Harvard T. H. Chan School of Public Health and University of Per ...

Intermediary neuron acts as synaptic cloaking device

22 hours ago

Neuroscientists believe that the connectome, a map of each and every connection between the millions of neurons in the brain, will provide a blueprint that will allow them to link brain anatomy to brain function. ...

Skeleton of cells controls cell multiplication

22 hours ago

A research team from Instituto Gulbenkian de Ciencia (IGC; Portugal), led by Florence Janody, in collaboration with Nicolas Tapon from London Research Institute (LRI; UK), discovered that the cell's skeleton ...

New study shows safer methods for stem cell culturing

Feb 25, 2015

A new study led by researchers at The Scripps Research Institute (TSRI) and the University of California (UC), San Diego School of Medicine shows that certain stem cell culture methods are associated with increased DNA mutations. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.