Fungus farming ant genome reveals insight into adaptation of social behavior

June 29, 2011
The Panamanian leaf-cutting ant Acromyrmex echinatior farms fungus on leaf fragments for food. Minor workers tend the fungus garden and nurse the brood, major workers defend the colony and bring in new leaf fragments. Credit: David R. Nash © 2011

The development of agriculture was a significant event in human cultural evolution, but we are not the only organisms to have adopted an agricultural way of life. In a study published online today in Genome Research, researchers have sequenced the genome of a fungus farming leaf-cutting ant, revealing new insights into the genetics and molecular biology behind this unusual lifestyle.

Found in Central and South America as well as the southern United States, leaf-cutting have evolved a with . By breaking down leaves into mulch, the ants help the fungus to grow special structures for large societies of ants to feed upon.

Since being recognized as a new Panamanian species about 15 years ago, much has been learned about the biology of the leaf-cutting ant Acromyrmex echinatior, but the of their farming lifestyle remained largely unknown. In this report, an international team of researchers has sequenced the genome of A. echinatior, and by comparison to other ant and insect genomes, identified genomic clues to the evolution of fungus farming behavior.

The authors noted that one of the most interesting findings in the genome of this leaf-cutting ant was that there are more in two particularly noteworthy gene families. "Based on their function in other organisms, we expect them to be involved in mating system adaptations and symbiotic food processing with the fungus," said Dr. Sanne Nygaard of the Copenhagen Centre for , co-lead author of the study.

Nygaard explained that these findings are especially fascinating because known in the reproductive biology and farming lifestyle of these ants can now be linked to specific genomic features.

The authors also noted a particularly surprising result when comparing genes coding for neuropeptides, the small molecules that drive many biological processes, between the leaf-cutting ant and the sequenced genes of other ants with varied habitats, diets, and behaviors. They expected that differences in neuropeptide genes would be pronounced, but they found just the opposite.

"An identical set of neuropeptide genes is present in all the ant genomes we examined," said Nygaard, "showing that these genes are remarkably conserved." The authors suggest that the neuroendocrinology of all ants may have a very similar make-up, going back to the dawn of social evolution in the ancestor of all present ants.

"We are as yet only scratching the surface of the fascinating adaptations that will likely be revealed in the coming years," added Dr. Jacobus Boomsma, Director of the Copenhagen Centre for Social Evolution and co-senior author of the report, explaining that the sequence and analysis performed here will set the stage for further insights into the biology of social behavior.

Explore further: Long-term co-evolution stability studied

More information: The manuscript will be published online ahead of print on Thursday, June 30, 2011. Its full citation is as follows: Nygaard S, Zhang G, Schiøtt M, Li C, Wurm Y, Hu H, Zhou J, Ji L, Qiu F, Rasmussen M, Pan H, Hauser F, Krogh A, Grimmelikhuijzen CJP, Wang J, Boomsma JJ. The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Res doi: 10.1101/gr.121392.111

Related Stories

Long-term co-evolution stability studied

June 27, 2006

U.S. biologists say the world's fungus-farming ants cultivate essentially the same fungus and aren't as critical to fungi reproduction as had been thought.

Farming and chemical warfare: A day in the life of an ant?

November 17, 2008

One of the most important developments in human civilisation was the practice of sustainable agriculture. But we were not the first - ants have been doing it for over 50 million years. Just as farming helped humans become ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.