Turning the heat on organizing energy

Jun 15, 2011 by Anne M Stark

(PhysOrg.com) -- Conventional wisdom suggests that when exposing a crystal to heat, the thermal energy within the crystal would spread uniformly across the lattice.

However, physicists have found that unlike the surface of water disturbed by a rock where energy spreads out in , energy in a crystal can spontaneously localize in distinct nonlinear modes. Not only that, but now Lawrence Livermore scientists report that this energy found in intrinsic localized modes (ILMs) as they are called, also can organize into complex and changing dynamical patterns when heated to between 614 and 636 kelvin (water boils at 373 kelvin).

The scientific community expected that ILMs formed randomly throughout a crystal. But the new research by LLNL's Michael Manley and collaborators from Oak Ridge National Laboratory and Cornell University found that ILMs organize into complex and changing patterns.
Using scattering to probe a crystal, Manley and colleagues found that between 614 and 636 kelvin, the ILMs began switching as a unit from one pattern to another and then would return to their original organization as the crystal was subjected to further heating.

"Although dynamical patterns like this have been known for more than 100 years, this is the first observation in an atomic lattice and the first in thermal equilibrium," Manley said. "It was a big surprise that energy organized in equilibrium. It goes outside of how we treat equilibrium."
ILMs may play an important role in advanced photonic switching devices; and storage processes in biopolymers; "unzipping" of DNA; and folding of proteins.

"This new understanding is of practical importance since it occurs in ordinary crystals at temperatures where materials are used," Manley said. "It may be of special importance in applications where the flow of is critical, such as with ."

The research appears in the June 14 issue of the new journal, Scientific Reports (Nature's open access journal). The paper can be accessed for free on the Web.

Explore further: New terahertz device could strengthen security

Related Stories

Scientists Track Heat in Tiny Rolls of Carbon Atoms

Mar 02, 2009

(PhysOrg.com) -- IBM Research scientists today announced a landmark study in the field of nanoelectronics; the development and demonstration of novel techniques to measure the distribution of energy and heat in powered carbon ...

Recommended for you

New terahertz device could strengthen security

14 hours ago

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

CERN makes public first data of LHC experiments

18 hours ago

CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected ...

New technique allows ultrasound to penetrate bone, metal

Nov 20, 2014

Researchers from North Carolina State University have developed a technique that allows ultrasound to penetrate bone or metal, using customized structures that offset the distortion usually caused by these ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Vendicar_Decarian
1 / 5 (1) Jun 15, 2011
Gawad works in mysterious ways.
hush1
1 / 5 (1) Jun 15, 2011
Water only contracts until it is lowered to 39 degrees; when it gets colder than that, it begins to expand.

The article reminds me of this. And not that the article or this are related.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.