Emissions from energy use in the water sector are poorly understood

Jun 26, 2011

Greater understanding is needed of greenhouse gas (GHG) emissions from energy use in the water sector if it is to meet sustainability goals, according to researchers at the University of East Anglia (UEA).

In a study published online today in Nature Climate Change, Prof Declan Conway and Sabrina Rothausen argue that greater focus on the of the water sector will be a crucial part of the policy response to the huge challenges it faces in the coming decades. Transpar¬ency in the water industry's is also likely to be important for it to meet carbon-reduction commitments while responding to other measures of sustainability, such as the need for stricter quality standards and increasing demand.

To date, much attention has been given to the need for sustainable water resource management, but far less to the growing energy use and associated from the water sector, for example through processes involved in water treatment and distribution and domestic heating of water.

"Pressures on include stricter water-quality standards, increasing demand for water and the need to adapt to climate change, while reducing emissions of GHGs," said Prof Conway, professor of water resources and climate change.

"The pro¬cesses of abstraction, transport and treatment of fresh water and wastewater all demand energy. Adapting water management to meet increasing demand, regula¬tory standards and the effects of climate change will in many cases require greater energy use."

He added: "Energy use in the water sec¬tor is growing, yet its importance is under-recognized, and gaps remain in our knowledge. In this study we define the need to integrate energy use further into water resource management and identify opportunities for the water sector to understand and describe more effectively its role in GHG emissions, through regulatory and behavioural responses, to meet future challenges."

Some recent studies have highlighted the importance of GHG emissions from energy use in the water sector. They show that water-related energy use in the US accounts for nearly 5% of total GHG emissions, and the proportion is even higher in the UK, although there it is mostly associated with end uses of water, such as heating. In countries with very high freshwater withdrawals, most of the water is used for irrigation and the energy used in its extraction and transport is often consider¬able. Estimates for India suggest that emissions from lifting water for irrigation could be as much as 6% of total national emissions.

Climate change represents a huge challenge to the sustainable management of water resources. In recent decades, develop¬ments in industrial, agricultural and domestic water use, and in water-quality regulation, have greatly intensified the treatment and transport of water. Moreover, rising demand for food and bio¬fuels, and their international trade, threaten to drive expansion of irrigated cropland and cropping intensity and hence greater use of water for agriculture. These activities generally require high energy consumption and have contributed to increases in energy use in the water sector in many parts of the world.

The 'perfect storm' scenario of sus¬taining increases in food production given impacts and the need to reduce GHG emissions, together with increasing competition for water, provides a strong rationale for better inte¬gration of water and energy use.

There is also a need to achieve better connections between mitigation and adaptation. Consideration of alternative water supply systems, treatment tech¬nologies or water allocation may have a tendency to overlook the carbon cost; some measures regarded as sustainable water man¬agement, such as desalination, are very energy intensive. This is particularly the case in the absence of regulatory pressure, as is cur¬rently the case in most countries.

In emissions from energy use in the water sector, Prof Conway and Ms Rothausen, of the School of International Development, quantify energy use in the water sector and detail the extent of current knowledge on emissions from the water sector and agricultural water use. Their review shows that energy use and GHG emissions in the sector are under-recognized, in part because of differences in the scope of water-sector boundaries, data availability, methodologi¬cal approaches and whether results are expressed as energy use or GHG emissions.

Ms Rothausen explained: "Although end use often has the highest energy use of all water-sector elements, it has not traditionally been seen as a direct part of the water sector and is often unaccounted for in water management and policy.

"What evidence there is shows that energy use in the water sector is considerable and growing. This growth is likely to continue, sometimes as an unintended policy outcome, with greater pressure to use and maintain quality of water resources. Despite some recent progress, we need to better understand and profile the role of the water sector as a GHG emitter. A co-ordinated view of the water sector will promote more com¬prehensive assessments of energy use, while standardized methodologies will enable comparisons between assessments of different technolo¬gies and processes, and between regions or countries."

Explore further: Shell files new plan to drill in Arctic

More information: Greenhouse-gas emissions from energy use in the water sector is published online on June 26 in Nature Climate Change, DOI: 10.1038/nclimate1147

Provided by University of East Anglia

4 /5 (3 votes)

Related Stories

FIXD tells car drivers via smartphone what is wrong

5 hours ago

A key source of anxiety while driving solo, when even a bothersome back-seat driver's comments would have made you listen: the "check engine" light is on but you do not feel, smell or see anything wrong. ...

Team pioneers strategy for creating new materials

6 hours ago

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Shell files new plan to drill in Arctic

6 hours ago

Royal Dutch Shell has submitted a new plan for drilling in the Arctic offshore Alaska, more than one year after halting its program following several embarrassing mishaps.

Aging Africa

6 hours ago

In the September issue of GSA Today, Paul Bierman of the University of Vermont–Burlington and colleagues present a cosmogenic view of erosion, relief generation, and the age of faulting in southernmost Africa ...

Recommended for you

Shell files new plan to drill in Arctic

Aug 29, 2014

Royal Dutch Shell has submitted a new plan for drilling in the Arctic offshore Alaska, more than one year after halting its program following several embarrassing mishaps.

Reducing water scarcity possible by 2050

Aug 29, 2014

Water scarcity is not a problem just for the developing world. In California, legislators are currently proposing a $7.5 billion emergency water plan to their voters; and U.S. federal officials last year ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Telekinetic
1 / 5 (2) Jun 26, 2011
http://www.youtub..._Jppvzyk

Put one of these "playpumps" in every schoolyard, you'll solve childhood obesity and non-GHG water extraction simultaneously.
twango
not rated yet Jun 26, 2011
Crappy writing (what is the 'water sector'? Why isn't that spelled out right away?) and lots of embedded, unnecessary characters. Sometimes cut-and-paste 'news' just isn't enough, is it?
Argon
1 / 5 (3) Jun 27, 2011
"greenhouse gas (GHG)"

Socialists can't understand morality (SCUM):)

Acronymns scarcely suffice (ASS):)

Dare I call kilts scanty (DICKS):)