Researchers demonstrate electo-optic modulation of single photons from a quantum dot

June 30, 2011

(PhysOrg.com) -- In a recent article in Applied Physics Letters, CNST researchers demonstrated how commercially available electro-optic modulators can be used to tailor the single photon output of quantum dots (QDs) for use in broadband quantum memories and other systems.

Nanoscale light-emitters such as semiconductor QDs are leading candidates for the stable generation of single photons "on demand" for use in communications, information processing, and metrology.

To create such photons, a train of can be used to optically excite a single, epitaxially-grown semiconductor QD, which then emits a train of single photon pulses. However, the temporal profile of these single photon pulses, described as a photon wave packet, is typically not ideal for use in .

Using commercial, high-performance telecommunications electro-optic modulators, the researchers were able to temporally manipulate these to produce a variety of shapes, including optimally-shaped Gaussian pulses. Compared to previous work, this approach reduced the modulation timescale more than two orders of magnitude, reaching the sub-nanosecond regime needed for semiconductor QDs.

Finally, the researchers proposed that such electro-optic modulation may be a method for improving the quality of single photons from existing QD sources. Because of decoherence, single generated by a QD are not identical, and instead have different wave packets. Electro-optic modulation could be a flexible and spectrally broadband way to select for the decoherence-free portion of the QD emission, and thereby improve the photon indistinguishability needed for quantum information processing applications.

Explore further: World's shortest single photon pulse created

More information: Subnanosecond electro-optic modulation of triggered single photons from a quantum dot, M. T. Rakher and K. Srinivasan, Applied Physics Letters 98, 211103 (2011). doi:10.1063/1.3593007

Abstract
Control of single photon wave-packets is an important resource for developing hybrid quantum systems which are composed of different physical systems interacting via photons. Here, we extend this control to triggered photons emitted by a quantum dot, temporally shaping single photon wave-packets on timescales fast compared to their radiative decay by electro-optic modulation. In particular, telecommunications-band single photons resulting from the recombination of an exciton in a quantum dot with exponentially decaying wave-packets are synchronously modulated to create Gaussian-shaped single photon wave-packets. We explore other pulse shapes and investigate the feasibility of this technique for increasing the indistinguishability of quantum dot generated single photons.

Related Stories

Etched quantum dots shape up as single photon emitters

February 23, 2011

(PhysOrg.com) -- Like snowflakes or fingerprints, no two quantum dots are identical. But a new etching method for shaping and positioning these semiconductor nanocrystals might change that. What's more, tests at the National ...

Study finds single photons cannot exceed the speed of light

June 24, 2011

(PhysOrg.com) -- The rule that nothing can travel faster than the speed of light, c, is one of the most fundamental laws of nature. But since this speed limit has only been experimentally demonstrated for information carried ...

Shining light in quantum computing

September 12, 2006

University of Queensland scientist Devon Biggerstaff is investigating ways to manipulate light in a process that will help shape future supercomputers and communication technology.

Recommended for you

Electron highway inside crystal

December 8, 2016

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their ...

Researchers improve qubit lifetime for quantum computers

December 8, 2016

An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits. An important prerequisite for the realization of high-performance quantum computers is ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.