Researchers demonstrate electo-optic modulation of single photons from a quantum dot

Jun 30, 2011

(PhysOrg.com) -- In a recent article in Applied Physics Letters, CNST researchers demonstrated how commercially available electro-optic modulators can be used to tailor the single photon output of quantum dots (QDs) for use in broadband quantum memories and other systems.

Nanoscale light-emitters such as semiconductor QDs are leading candidates for the stable generation of single photons "on demand" for use in communications, information processing, and metrology.

To create such photons, a train of can be used to optically excite a single, epitaxially-grown semiconductor QD, which then emits a train of single photon pulses. However, the temporal profile of these single photon pulses, described as a photon wave packet, is typically not ideal for use in .

Using commercial, high-performance telecommunications electro-optic modulators, the researchers were able to temporally manipulate these to produce a variety of shapes, including optimally-shaped Gaussian pulses. Compared to previous work, this approach reduced the modulation timescale more than two orders of magnitude, reaching the sub-nanosecond regime needed for semiconductor QDs.

Finally, the researchers proposed that such electro-optic modulation may be a method for improving the quality of single photons from existing QD sources. Because of decoherence, single generated by a QD are not identical, and instead have different wave packets. Electro-optic modulation could be a flexible and spectrally broadband way to select for the decoherence-free portion of the QD emission, and thereby improve the photon indistinguishability needed for quantum information processing applications.

Explore further: Precision gas sensor could fit on a chip

More information: Subnanosecond electro-optic modulation of triggered single photons from a quantum dot, M. T. Rakher and K. Srinivasan, Applied Physics Letters 98, 211103 (2011). doi:10.1063/1.3593007

Abstract
Control of single photon wave-packets is an important resource for developing hybrid quantum systems which are composed of different physical systems interacting via photons. Here, we extend this control to triggered photons emitted by a quantum dot, temporally shaping single photon wave-packets on timescales fast compared to their radiative decay by electro-optic modulation. In particular, telecommunications-band single photons resulting from the recombination of an exciton in a quantum dot with exponentially decaying wave-packets are synchronously modulated to create Gaussian-shaped single photon wave-packets. We explore other pulse shapes and investigate the feasibility of this technique for increasing the indistinguishability of quantum dot generated single photons.

add to favorites email to friend print save as pdf

Related Stories

Etched quantum dots shape up as single photon emitters

Feb 23, 2011

(PhysOrg.com) -- Like snowflakes or fingerprints, no two quantum dots are identical. But a new etching method for shaping and positioning these semiconductor nanocrystals might change that. What's more, tests ...

Shining light in quantum computing

Sep 12, 2006

University of Queensland scientist Devon Biggerstaff is investigating ways to manipulate light in a process that will help shape future supercomputers and communication technology.

Recommended for you

New filter could advance terahertz data transmission

14 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

14 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

16 hours ago

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

17 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.