New DNA analysis thousand times more sensitive

Jun 17, 2011

(PhysOrg.com) -- An international team of researchers has developed a new DNA technology which makes it possible to perform reliable analyses on DNA quantities that are a thousand times smaller than was previously the case. The method can be used, for example, to study small quantities of stem cells, starting tumour tissue, parts of plant and animal tissue, and archaeological samples. The team, which includes a researcher from Plant Research International, part of Wageningen UR, is publishing the new method in Nature Methods under the name LinDA.

The main difference between LinDA and commonly used methods is how DNA are copied to make them identifiable in analysis equipment. With the current PCR-based methods only fragments between two primers can be amplified. Therefore regions with a higher GC content are more often amplified than regions with a higher AT content, as primers with high GC content bind to the DNA template at a higher temperature. With existing PCR based methods DNA fragments are amplified exponentially while LinDA DNA is amplified linearly. The latter is in particular attractive for the identification and quantification of low abundant DNA (or RNA) fragments.

In the new technology a specific is attached to the beginning and end of all DNA molecules in an analysis sample. This fragment is based on a specific piece of DNA that derives from a virus: the so-called T7 promoter. All DNA fragments containing this T7 promoter will be transcribed multiple times enabling .

The new technology only copies original DNA molecules, while the commonly used techniques also copies copied molecules. The ‘old’ technologies are therefore often called ‘exponential’ because every copying attempt results in twice as many DNA molecules: 1, 2, 4, 8, 16, etcetera. As LinDA only copies the original , it creates a linear sequence: 1, 2, 3, 4, and so on.

Because the LinDA technology copies all DNA fragments in an analysis sample, and in a linear sequence as well, the DNA of a couple of thousand cells or a small archaeological find is sufficient. ‘Old’ technologies require approximately a thousand times more DNA. Moreover, the linear method is extra reliable as it has no bias toward GC reach regions, in contract to PCR based methods.

The LinDA technology can be used, for example, on a very small archaeological sample to determine what animal species it is from. It can also be used on starting tumours to study which genes are more or less active. In plants, the technology creates the opportunity to analyse the cells involved in a fungal infection in detail, thus building a better picture of a plant’s defensive system. This knowledge can then be used to develop plants that can better protect themselves against the fungus, which can in turn results in more sustainable plant production.

Explore further: The origin of the language of life

More information: Publication: www.nature.com/nmeth/journal/v… full/nmeth.1626.html

Provided by Wageningen University

5 /5 (4 votes)

Related Stories

New cheaper method for mapping disease genes

May 27, 2008

Scientists at the Swedish medical university Karolinska Institutet have developed a new DNA-sequencing method that is much cheaper than those currently in use in laboratories. They hope that this new method will make it possible ...

DNA falls apart when you pull it

May 20, 2011

DNA falls apart when you pull it with a tiny force: the two strands that constitute a DNA molecule disconnect. Peter Gross of VU University Amsterdam has shown this in his PhD research project. With this research, ...

Scientists build a better DNA molecule

May 27, 2008

Building faultless objects from faulty components may seem like alchemy. Yet scientists from the Weizmann Institute’s Computer Science and Applied Mathematics, and Biological Chemistry Departments have achieved just that, ...

Recommended for you

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.