On the crest of a freak wave

Jun 15, 2011 by Pete Wilton, OxSciBlog

It was on 1 January 1995 that a wave over 25 metres high was recorded at the Draupner platform in the North Sea off the coast of Norway.

Ever since researchers have been attempting to understand the mechanisms which produced the ‘Draupner wave’ and are responsible for other abnormally large or ‘freak’ waves.

In Proceedings of the Royal Society A this week Thomas Adcock and Paul Taylor of Oxford University’s Department of Engineering Science report that their new analysis may have the answers.

I asked Thomas about giant waves, predictions and The Poseidon Adventure…

OxSciBlog: How have people explained freak waves in the past?
Thomas Adcock: Freak waves will occur when the crests of many small waves come together to form a large wave. The random nature of waves means that this will occasionally happen – we are interested in any mechanism which will enhance this focusing.

Waves may be steered, either by currents (for instance, off South Africa) or by the sea-bed (such as near Hawaii), to produce abnormal waves. If all the waves are all moving in the same direction, then complex non-linear interactions can produce wave focusing. However, real ocean waves never all move in quite the same direction and it is a point of contention as to whether this really causes freak waves at sea.

OSB: Why is the Draupner wave interesting to study?
TA: The Draupner wave is one of few (possibly the only) instance of a high quality measurement of a freak wave in deep water. None of the mechanisms we discussed seem responsible for producing this wave.

One interesting feature is that under a large wave we expect to see a small but long and low depression (up to 1m deep) under a large wave group. Dan Walker, when a DPhil student in Oxford, found that the opposite was true for the Draupner wave. This confirms that there was something unusual about this wave.

OSB: What clues does it give to how freak waves form?
TA: The occurrence of the long low rise rather than a depression for the Draupner wave leads us to suggest the giant wave is the sum of two wave groups that were travelling at roughly right angles through each other. Mariners know that crossing sea-states are very unpleasant for the crew and potentially dangerous for ships – the wave which hit the Queen Mary in World War II, and which inspired the film The Poseidon Adventure, occurred in a crossing sea.

The idea for this paper was inspired by watching this video showing an unusual wave hitting a ship from the side. We began to think what would the consequences be if this was how the Draupner wave formed – and we realised this would explain the features which had been puzzling people about the wave.

OSB: How might your findings help to predict/mitigate their impact?
TA: Engineers and scientists are quite good at forecasting the general sea-state; Radio 4 long wave listeners will be familiar with the shipping forecast. If we can identify in which sea-states freak waves are likely then we can use this in design. For instance, if we forecast a storm in which freak waves are likely then we could route a ship around the storm.

OSB: What further research is needed in this area?
TA: Whilst scientists understand the basic features of most sea-states fairly well, we do not really understand at a local level the physics when a sea-state changes rapidly – for example if the wind suddenly starts blowing in a different direction. What we really need is far more high quality measurements of individual large waves – without this we cannot know whether our theories are right.

Explore further: Heat distributions help researchers to understand curved space

add to favorites email to friend print save as pdf

Related Stories

What makes the giant freak wave 'stable'

Jun 18, 2010

The dreaded giant freak wave that can appear on the open sea out of nowhere, can now for the first time be theoretically calculated and modelled. Researchers at Umea University and the Ruhr-Universitat Bochum in Germany have ...

New research sheds light on freak wave hot spots

Aug 05, 2009

Stories of ships mysteriously sent to watery graves by sudden, giant waves have long puzzled scientists and sailors. New research by San Francisco State professor Tim Janssen suggests that changes in water depth and currents, ...

Research pinpoints conditions favorable for freak waves

Aug 24, 2009

(PhysOrg.com) -- Stories of ships mysteriously sent to watery graves by sudden, giant waves have long puzzled scientists and sailors. New research by Assistant Professor of Geosciences Tim Janssen suggests ...

Making monster waves

Oct 19, 2009

Rogue waves -- giant waves that spring up suddenly and tower over the seas around them—have inspired physicists to look for an analogue in light. These high-intensity pulses can cross large distances without ...

Gravity Waves Make Tornados

Mar 19, 2008

Did you know that there's a new breakfast food that helps meteorologists predict severe storms? Down South they call it "GrITs."

Recommended for you

Precarious work schedules common among younger workers

Aug 29, 2014

One wish many workers may have this Labor Day is for more control and predictability of their work schedules. A new report finds that unpredictability is widespread in many workers' schedules—one reason ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Decimatus
not rated yet Jun 15, 2011
A 25 meter wave hitting your ship for no apparent reason would really suck.

I have always wondered how something like an oil rig handles such an occurence. I will probably google this to learn me, but just something about a giant oil platform and a tiny fragile drill bit seems like a recipe for frequent disaster(though obviously not).