Coexistence of superconductivity and magnetism

Jun 17, 2011

(PhysOrg.com) -- Scientists from the University of Sydney are celebrating the 100th anniversary of superconductivity with a discovery of their own.

As part of an international collaboration, researchers from the University's Australian Centre for Microscopy and Microanalysis have identified a link between superconductivity and magnetism. Their results were published today in the international physics journal, Physical Review Letter.

Previously, superconductivity and magnetism have been considered to be 'at war' says Dr Wai Kong Yeoh, who led the effort around 'Probing Atoms to Understand the Coexistence of Superconductivity and Magnetism'.

Using a technique known as atom probe tomography, a cutting-edge that provides atom-by-atom map of a material, Dr Yeoh captured a which shows the structure of Fe-based superconductors. The image shows coexistence of magnetism and superconductivity, in which dopant atoms are observed forming nanoscale clusters. These clusters contain only a handful of atoms.

"Complementary advanced quantum-mechanics based simulations demonstrated that these clusters underpin the unique properties of this material.

Research towards establishing the interplay between these two states, that usually only coexist under very restricted conditions, has the potential to lead to exotic new or the development of advanced superconducting based devices, with application in nanoelectronics, or high-resolution magnetic measurement" says Dr Yeoh.

The results demonstrate the potential of this approach, combining characterisation and advanced simulations, to open new pathways to advance superconductor science.

Explore further: Using magnetic fields to understand high-temperature superconductivity

Provided by University of Sydney

4.3 /5 (4 votes)
add to favorites email to friend print save as pdf

Related Stories

Secrets behind high temperature superconductors revealed

Feb 22, 2009

(PhysOrg.com) -- Scientists from Queen Mary, University of London and the University of Fribourg (Switzerland) have found evidence that magnetism is involved in the mechanism behind high temperature superconductivity.

Superconductors on the nanoscale

Mar 15, 2010

Superconductors, materials in which current flows without resistance, have tantalizing applications. But even the highest-temperature superconductors require extreme cooling before the effect kicks in, so researchers want ...

Many roads lead to superconductivity

Sep 10, 2010

Since their discovery in 2008, a new class of superconductors has precipitated a flood of research the world over. Unlike the previously familiar copper ceramics (cuprates), the basic structure of this new class consists ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

KBK
not rated yet Jul 13, 2011
since there is no flow of time in a true superconductive flow state .....and an off shoot of that, a coupled effect seems to be 'magnetic'..then....what it the third axis?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.