Chemists devise better way to prepare workhorse molecules

Jun 09, 2011 by Terry Devitt

In chemistry, so-called aromatic molecules compose a large and versatile family of chemical compounds that are the stuff of pharmaceuticals, electronic materials and consumer products ranging from sunscreen to plastic soda bottles.

Writing in the current online issue (June 9) of the journal Science, a team led by University of Wisconsin-Madison chemistry Professor Shannon Stahl reports a new, environmentally friendly way to make substituted aromatic molecules that can be customized for different industrial needs.

As college chemistry students know, aromatic molecules have a special stability conferred by a ring of six with alternating single and . "The ultimate utility of these molecules depends on the chemical groups attached at the corners of this hexagonal platform," explains Stahl. "Interest in preparing substituted aromatic molecules traces back to the dawn of ."

In fact, the 2010 Nobel Prize in Chemistry was awarded for catalytic chemical reactions that allow the introduction of specific groups to the periphery of aromatic molecules. These methods, and older traditional methods, rely on modifying an existing aromatic molecule, Stahl explains. But the stability of aromatic molecules can make such approaches difficult, and existing methods also have many limitations in the types and patterns of chemical groups that can be installed.

The method devised by Stahl and Wisconsin colleagues Yusuke Izawa and Doris Pun owes its success to the discovery of a new palladium catalyst. The catalyst gives chemists a way to peel off hydrogen from cyclic molecules to form aromatic products with the desired substitution patterns already in place. The hydrogen removed by the palladium catalyst is combined with oxygen, and water is formed as the only .

The Wisconsin team demonstrated the utility and efficiency of the new process on phenols, aromatic compounds that are produced on a large scale as precursors to many kinds of industrial materials and pharmaceutical agents. While the new catalytic method can be used to make a broad spectrum of aromatic molecules of interest to science and industry, the new work will be of most immediate practical use to drug companies, according to Stahl. For example, an anticancer agent that was difficult to make using previously known methods was efficiently produced using the strategy devised by the team.

Stahl notes that the work published today in Science will require more development before it is suitable for large-scale industrial production, but he emphasizes that concepts introduced by the new work will have broad utility. "Many new catalysts, reaction conditions and target molecules can be envisioned. Overall, this route to substituted aromatic molecules has a lot of potential," he says.

Explore further: Proteins: New class of materials discovered

Related Stories

A new way to prepare fluorinated pharmaceuticals

Aug 13, 2009

(PhysOrg.com) -- A team of MIT chemists has devised a new way to add fluorine to a variety of compounds used in many drugs and agricultural chemicals, an advance that could offer more flexibility and potential cost-savings ...

Coal Liquefaction

Jan 09, 2006

The tightening of worldwide oil reserves is causing the price of oil to escalate — and makes coal, which is much more abundantly available, an interesting starting material for liquid fuels and chemical raw materials. Researchers ...

Molecules Dress for Success

Sep 25, 2006

An enormous challenge to science is the generation of two individual molecules that are not chemically bound to each other but are mechanically wedged together to form a tight link. A team of British and American researchers ...

Recommended for you

Proteins: New class of materials discovered

20 hours ago

Scientists at the Helmholtz Center Berlin along with researchers at China's Fudan University have characterized a new class of materials called protein crystalline frameworks.

The fluorescent fingerprint of plastics

Aug 21, 2014

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

Aug 21, 2014

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Researchers create engineered energy absorbing material

Aug 21, 2014

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

User comments : 0