Improving catalysis

Jun 14, 2011
Improving catalysis
Professor Graham Hutchings

(PhysOrg.com) -- Cardiff University research may help to improve the way that metal nanoparticles are used in catalysis – the process of making chemical reactions go faster.

Metal nanoparticles are fundamental to developments in areas such as photonics, sensing, imaging, medicine and catalysis.

Methods for producing these nanoparticles require the addition of , a protective agent, to stabilize the nanoparticles and stop them coalescing when they bump into each other.

Once the nanoparticles have been stabilized, the ligands are no longer required and their continued presence can actually stop the nanoparticles from being used for surface reactions such as catalysis.

A team from the School of Chemistry has developed a new method for removing these ligands, thereby improving catalytic activity in a range of reactions.

Professor Graham Hutchings who led the study said: "The ligands effectively block the surface of the nanoparticles preventing access to either light in photosensing applications, or chemicals for catalysis applications. However, removing the ligands once the nanoparticles have been stabilized has always been problematic. Heat treatments have previously been used but these actually damage the surface of the metals."

"What we have found is that a water treatment can actually be used to remove the protecting agents effectively, making the nanoparticles much more active for ."

"Maximizing the catalytic abilities of these nanoparticles could increase the effectiveness of catalytic reactions in manufacturing and industry.

"Our initial studies have produced some positive results and we’re anticipating that this approach should lead to improved application in fields as diverse as environmental protection and energy production."

The study was carried out by Professor Hutchings’ team at Cardiff, in collaboration with colleagues at Lehigh University in Pennsylvania. The paper "Facile removal of stabilizer-ligands from supported gold " was published by Nature Chemistry and is available online.

Explore further: Making graphene in your kitchen

Related Stories

Road to greener chemistry paved with nano-gold

Oct 24, 2005

The selective oxidation processes that are used to make compounds contained in agrochemicals, pharmaceuticals and other chemical products can be accomplished more cleanly and more efficiently with gold nanoparticle catalysts, ...

Recommended for you

Making graphene in your kitchen

8 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.