Improving catalysis

Jun 14, 2011
Improving catalysis
Professor Graham Hutchings

(PhysOrg.com) -- Cardiff University research may help to improve the way that metal nanoparticles are used in catalysis – the process of making chemical reactions go faster.

Metal nanoparticles are fundamental to developments in areas such as photonics, sensing, imaging, medicine and catalysis.

Methods for producing these nanoparticles require the addition of , a protective agent, to stabilize the nanoparticles and stop them coalescing when they bump into each other.

Once the nanoparticles have been stabilized, the ligands are no longer required and their continued presence can actually stop the nanoparticles from being used for surface reactions such as catalysis.

A team from the School of Chemistry has developed a new method for removing these ligands, thereby improving catalytic activity in a range of reactions.

Professor Graham Hutchings who led the study said: "The ligands effectively block the surface of the nanoparticles preventing access to either light in photosensing applications, or chemicals for catalysis applications. However, removing the ligands once the nanoparticles have been stabilized has always been problematic. Heat treatments have previously been used but these actually damage the surface of the metals."

"What we have found is that a water treatment can actually be used to remove the protecting agents effectively, making the nanoparticles much more active for ."

"Maximizing the catalytic abilities of these nanoparticles could increase the effectiveness of catalytic reactions in manufacturing and industry.

"Our initial studies have produced some positive results and we’re anticipating that this approach should lead to improved application in fields as diverse as environmental protection and energy production."

The study was carried out by Professor Hutchings’ team at Cardiff, in collaboration with colleagues at Lehigh University in Pennsylvania. The paper "Facile removal of stabilizer-ligands from supported gold " was published by Nature Chemistry and is available online.

Explore further: Carbon nanoballs can greatly contribute to sustainable energy supply

Related Stories

Road to greener chemistry paved with nano-gold

Oct 24, 2005

The selective oxidation processes that are used to make compounds contained in agrochemicals, pharmaceuticals and other chemical products can be accomplished more cleanly and more efficiently with gold nanoparticle catalysts, ...

Recommended for you

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.