Breakthrough reported in transconductance in ink-jet printing

Jun 24, 2011

MRS Communications, the recently launched journal from the Materials Research Society and Cambridge University Press, was designed to serve the fast-moving international materials research community.

The inaugural Rapid Communications article details an important breakthrough by a team of Japanese and German researchers.

The researchers report that they have successfully achieved a transconductance of 0.76 S/m for organic with 4 V-operation. The team writes: “This is the highest transconductance reported for organic TFTs fabricated using printing, to the best of our knowledge.”

The transconductance report is the first in the new journal’s Rapid Communications section (which is the concise presentation of a study with broad interest showing novel results).



The first published paper shows that, thanks to ultra-low volume (subfemtoliter) inkjet nozzles, small transistors (channel length ~ 1 μm) were fabricated using electrodes printed from nanoparticle metal inks.

The small dimensions allowed the authors to demonstrate low-power and high-speed operation (theoretically up to a few MHz) of organic , a requirement for useful circuits. 



The researchers go on to show that organic and printed electronics are not limited to large and slow devices, but can be extended to fast and miniaturized circuits while remaining compatible with low-cost fabrication on cheap flexible substrates.

In general, these capabilities widen the spectrum of potential applications of this technology.



Explore further: Making graphene in your kitchen

More information: Low-voltage organic transistor with subfemtoliter inkjet source–drain contacts,

Abstract
We have successfully achieved a transconductance of 0.76 S/m for organic thin-film transistors with 4 V operation, which is the largest value reported for organic transistors fabricated using printing methods. Using a subfemtoliter inkjet, silver electrodes with a line width of 1 µm and a channel length of 1 µm were printed directly onto an air-stable, high-mobility organic semiconductor that was deposited on a single-molecule self-assembled monolayer-based gate dielectric. On reducing the droplet volume (0.5 fl) ejected from the inkjet nozzle, which reduces sintering temperatures down to 90 °C, the inkjet printing of silver electrodes was accomplished without damage to the organic semiconductor.

Provided by Cambridge University

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Heavy metals and moose

Nov 09, 2010

Moose in southern Norway are in significantly worse health than those further north and in eastern Norway. An analysis of roughly 600 moose livers, combined with information such as carcass weights and ages, ...

Recommended for you

Making graphene in your kitchen

16 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Atom probe assisted dating of oldest piece of earth

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...